【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△C;平移△ABC,若A的對應點
的坐標為(0,4),畫出平移后對應的△
;
(2)若將△C繞某一點旋轉可以得到△
,請直接寫出旋轉中心的坐標;
(3)在軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(–1,2),與x軸的一個交點A在點(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個相等的實數根.其中正確結論的個數為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結論中:
①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S=ACBD.
正確的是 (填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形中,
,
,點
從
開始沿折線
以
的速度運動,點
從
開始沿
邊以
的速度移動,如果點
、
分別從
、
同時出發,當其中一點到達
時,另一點也隨之停止運動,設運動時間為
,當
________時,四邊形
也為矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,
,
,
.點
從
開始沿邊
向點
以
的速度移動,與此同時,點
從點
開始沿邊
向點
以
的速度移動.如果
、
分別從
、
同時出發,當點
運動到點
時,兩點停止運動,問:
經過幾秒,
的面積等于
?
(2)的面積會等于
嗎?若會,請求出此時的運動時間;若不會,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ ABC中,AB = AC
(1)如圖 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,則∠EDC =
(2)如圖 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,則∠EDC =
(3)思考:通過以上兩題,你發現∠BAD與∠EDC之間有什么關系?請用式子表示:
(4)如圖 3,如果AD不是BC上的高,AD = AE,是否仍有上述關系?如有,請你寫出來,并說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線
當拋物線的頂點在
軸上時,求該拋物線的解析式;
不論
取何值時,拋物線的頂點始終在一條直線上,求該直線的解析式;
若有兩點
,
,且該拋物線與線段
始終有交點,請直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
小聰遇到這樣一個有關角平分線的問題:如圖1,在中,
,
平分
,
,
,求
的長.
小聰思考:因為平分
,所以可在
邊上取點
,使
,連接
.這樣很容易得到
,經過推理能使問題得到解決(如圖2).
請回答:(1)是 三角形.
(2)的長為 .
參考小聰思考問題的方法,解決問題:
(3)如圖3,已知中,
,
平分
,
.求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發,以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關于x的函數圖象是( 。
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com