【題目】已知關于x的一元二次方程:2x2+6x﹣a=0.
(1)當a=5時,解方程;
(2)若2x2+6x﹣a=0的一個解是x=1,求a;
(3)若2x2+6x﹣a=0無實數解,試確定a的取值范圍.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E是平面內異于點A的任意一點,以線段AE為邊作正方形AEFG,連接EB,GD.
(1)如圖1,求證EB=GD;
(2)如圖2,若點E在線段DG上,AB=5,AG=3,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“一帶一路”倡議提出五年多來,交通、通信、能源等各項相關建設取得積極進展,也為增進各國民眾福祉提供了新的發展機遇.下圖是2017年“一年一路”沿線部分國家的通信設施現狀統計圖.
根據統計圖提供的信息,下列推斷合理的是( ).
A.互聯網服務器擁有個數最多的國家是阿聯酋
B.寬帶用戶普及率的中位數是11.05%
C.有8個國家的電話普及率能夠達到平均每人1部
D.只有俄羅斯的三項指標均超過了相應的中位數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是等邊三角形ABC內一點,且PA=3,PB=4, PC=5,若將△APB繞著點B逆時針旋轉后得到△CQB,則∠APB的度數______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+
x+4與x軸相交于點A、B與y軸相交于點C,拋物線的對稱軸與x軸相交于點M,P是拋物線在x軸下方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.
(1)寫出點A,B的坐標, 并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點的坐標;若不能,說明理由;
(3)若將“P是拋物線在x軸下方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸上方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能求此時點P的坐標(直接寫出結果);若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.點P從B出發,沿BC方向,以1cm/s的速度向點C運動,點Q從A出發,沿AB方向,以2cm/s的速度向點B運動;若兩點同時出發,當其中一點到達端點時,兩點同時停止運動,設運動時間為t(s)(t>0),△BPQ的面積為S(cm2).
(1)t=2秒時,則點P到AB的距離是 cm,S= cm2;
(2)t為何值時,PQ⊥AB;
(3)t為何值時,△BPQ是以BP為底邊的等腰三角形;
(4)求S與t之間的函數關系式,并求S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y=x2-2mx-3m
(1)當m=1時,
①拋物線的對稱軸為直線______,
②拋物線上一點P到x軸的距離為4,求點P的坐標
③當n≤x≤時,函數值y的取值范圍是-
≤y≤2-n,求n的值
(2)設拋物線y=x2-2mx-3m在2m-1≤x≤2m+1上最低點的縱坐標為y0,直接寫出y0與m之間的函數關系式及m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線過點
,頂點為M點.
(1)求該拋物線的解析式;
(2)試判斷拋物線上是否存在一點P,使∠POM=90.若不存在,說明理由;若存在,求出P點的坐標;
(3)試判斷拋物線上是否存在一點K,使∠OMK=90,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B、C三個城市位置如圖所示,A城在B城正南方向180 km處,C城在B城南偏東37°方向.已知一列貨車從A城出發勻速駛往B城,同時一輛客車從B城出發勻速駛往C城,出發1小時后,貨車到達P地,客車到達M地,此時測得∠BPM=26°,兩車又繼續行駛1小時,貨車到達Q地,客車到達N地,此時測得∠BNQ=45°,求兩車的速度.(參考數據:sin37°≈,cos37°≈
,tan37°≈
,sin26°≈
,cos26°≈
,tan26°≈
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com