精英家教網 > 初中數學 > 題目詳情

【題目】四邊形ABCD內接于⊙O,連接AC、BD,2BDC+ADB180°

1)如圖1,求證:ACBC;

2)如圖2,E為⊙O上一點, FAC上一點,DEBF相交于點T,連接AT,若∠BFC=∠BDC+ABD,求證:AT平分∠DAB

3)在(2)的條件下,DTTEAD8,BD12,求DE的長.

【答案】1)見解析;(2)見解析;(38

【解析】

1)只要證明∠CAB=CBA即可.
2)如圖2中,作THADH,TRBDR,TLABL.想辦法證明TL=TH即可解決問題.
3)如圖3中,連接EAEB,作EG⊥AB,THADH,TRBDR,TLABL,AQBDQ.證明△EAG≌△TDHAAS),推出AG=DH,證明RtTDRRtTDHHL),推出DH=DR,同理可得AL=AH,BR=BL,設DH=x,則AB=2x,
SADB=BDAQ=ADh+ABh+DBh,可得AQ=h,再根據sinBDE=sinADE,sinAED=sinABD,構建方程組求出m即可解決問題.

解:(1)如圖1中,

∵四邊形ABCD內接于⊙O,

∴∠ADC+ABC180°,

即∠ADB+BDC+ABC180°,

2BDC+ADB180°,

∴∠ABC=∠BDC,

∵∠BAC=∠BDC

∴∠BAC=∠ABC,

ACBC

2)如圖2中,作THADH,TRBDR,TLABL

∵∠BFC=∠BAC+ABF,∠BAC=∠BDC

∴∠BFC=∠BDC+ABF,

∵∠BFC=∠BDC+ABD,

∴∠ABFABD,

BT平分∠ABD

∴∠ADE=∠BDE,

DT平分∠ADB,

THADH,TRBDR,TLABL

TRTL,TRTH,

TLTH

AT平分∠DAB

3)如3中,連接EA,EB,作EGAB,THADH,TRBDRTLABL,AQBDQ

∴∠EAB=∠EDB=∠EDA,AEBE,

∵∠TAE=∠EAB+TAB,∠ATE=∠EDA+DAT

∴∠TAE=∠ATE,

AETE

DTTE,

AEDT,

∵∠AGE=∠DHT90°

∴△EAG≌△TDHAAS),

AGDH,

AEEBEGAB,

AGBG,

2DHAB

RtTDRRtTDHHL),

DHDR,同理可得AL=AH,BRBL,

DHx,則AB2x,

AD8,DB12

ALAH8x,BR12x,AB2x8x+12x,

x5,

DH5,AB10,

TRTLTHhDTm,

SADB=BDAQ=ADh+ABh+DBh,

12AQ=(8+12+10h,

AQh

sinBDEsinADE,可得,

sinAEDsinABD,可得,

,

解得m4或﹣4(舍棄),

DE2m8

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】甲、乙人510次投籃命中次數如圖

1)填寫表格.

平均數

眾數

中位數

方差

______

8

8

______

8

______

______

3.2

2)①教練根據這5個成績,選擇甲參加投籃比賽,理由是什么?

②如果乙再投籃1場,命中8次,那么乙的投監成績的方差將會怎樣變化?(變大”“變小不變

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠AOB90°,且OA,OB分別與反比例函數yx0)、y=﹣x0)的圖象交于A,B兩點,則sinOAB的值是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,M,N是以AB為直徑的O上的點,且,弦MNAB于點C,BM平分ABD,MFBD于點F

1)求證:MFO的切線;

2)若CN3BN4,求CM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數的圖象如圖所示,以下結論:①abc0;②4acb2;③2a+b0;④其頂點坐標為(,﹣2);⑤當x時,yx的增大而減小;⑥a+b+c0正確的有( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知反比例函數y=-與一次函數ykxb的圖象交于A、B兩點,且點A的橫坐標和點B的縱坐標都是-2

求:(1)一次函數的解析式;

2△AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形的邊長為,是邊上一點,,將,分別沿折痕向內折疊,點,在點處重合,過點,交的延長線于.則下列結論正確的有(

;②為等腰直角三角形;③點的中點;④.

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現在很多家庭都使用折疊型西餐桌來節省空間,兩邊翻開后成圓形桌面(如圖1).餐桌兩邊ABCD平行且相等(如圖2),小華用皮帶尺量出AC2米,AB1米,那么桌面翻成圓桌后,桌子面積會增加_____平方米.(結果保留π

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經

過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標;

(2)“蛋線”在第四象限上是否存在一點P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

(3)當BDM為直角三角形時,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视