【題目】已知中,
,
,
.點
由
出發沿
向點
勻速運動,同時點
由
出發沿
向點
勻速運動,它們的速度相同,點
在
上,
,且點
在點
的下方,當點
到達點
時,點
,
也停止運動,連接
,設
.解答下列問題:
如圖
,當
為何值時,
為直角三角形;
如圖
,把
沿
翻折,使點
落在
點.
①當為何值時,四邊形
為菱形?并求出菱形的面積;
②如圖,分別取
,
的中點
,
,在整個運動過程中,則線段
掃過的區域的形狀為________,其面積為________.
【答案】平行四邊形
【解析】
(1)△ADF為直角三角形,有兩種可能:∠ADF=90°或∠AFD=90°,根據銳角三角函數,分兩種情況進行討論,列方程求解即可;
(2)①根據菱形的判定,可知當AD=DF時,四邊形ADFD′為菱形,根據銳角三角函數列方程求出x,計算菱形的面積即可;②根據三角形中位線定理可知,線段MN掃過的區域的形狀是平行四邊形,其面積為.
解:(1)∵∠ACB=90°,BC=8,tanA=
∴BC=8,AB=10,
∴AD=x,BE=x,AF=6-x,
當∠ADF=90°,如圖1左圖,
∵tanA=
∴cosA=
∴
x=;
當∠AFD=90°,如圖1右圖,
∵tanA=
∴cosA=
∴
x=,
∴當
x=或x=
,
△ADF為直角三角形;
(2)①如圖2,
∵AD=AD′,D′F=DF,
∴當AD=DF時,四邊形ADFD′為菱形,
∴連接DD′⊥AF于G,AG=,
∵tanA=,
∴cosA=,
∴,
∴x=,
S菱形=×DD′×AF=
×
×
=
;
②平行四邊形,
∵M、N分別為D′F、D′E的中點,
∴MN∥EF,MN=EF=2,
∴線段MN掃過的區域的形狀是平行四邊形,
當D運動到C,則F正好運動到A,此時MA=D′A=
DA=3,
∵∠DAB=∠D′AB,
∴tanA=tan∠D′AB=,
點M到AB的距離設為4x,則(3x)2+(4x)2=32,
解得:x=,
4x=
∴線段MN掃過的區域的形狀是平行四邊形的面積=2×=
.
科目:初中數學 來源: 題型:
【題目】如圖,直線與
,
軸分別交于點
,
,與反比例函數
圖象交于點
,
,過點
作
軸的垂線交該反比例函數圖象于點
.
求點
的坐標.
若
.
①求的值.
②試判斷點與點
是否關于原點
成中心對稱?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,A(-2,1),B(-3,4),C(-1,3),過點(l,0)作x軸的垂線.
(1)作出△ABC關于直線的軸對稱圖形△
;
(2)直接寫出A1(___,___),B1(___,___),C1(___,___);
(3)在△ABC內有一點P(m,n),則點P關于直線的對稱點P1的坐標為(___,___)(結果用含m,n的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數比購買A商品的件數的2倍少4件,如果需要購買A、B兩種商品的總件數不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(題文)如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線相交于A(1,
),B(4,0)兩點.
(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點,且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形為菱形,點
為對角線
上的一個動點,連接
并延長交射線
于點
,連接
.
求證:
;
是否存在這樣一個菱形,當
時,剛好
?若存在,求出
的度數;若不存在,請說明理由;
若
,且當
為等腰三角形時,求
的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《中華人民共和國道路交通管理條例》規定:小汽車在城街路上行駛速度不得超過70 km/h,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面車速檢測儀 A的正前方60 m處的C點,過了5 s后,測得小汽車所在的B點與車速檢測儀A之間的距離為100 m.
(1)求B,C間的距離.
(2)這輛小汽車超速了嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一種折疊式可調節的魚竿支架的示意圖,AE是地插,用來將支架固定在地面上,支架AB可繞A點前后轉動,用來調節AB與地面的夾角,支架CD可繞AB上定點C前后轉動,用來調節CD與AB的夾角,支架CD帶有伸縮調節長度的伸縮功能,已知BC=60cm.
(1)若支架AB與地面的夾角∠BAF=35°,支架CD與釣魚竿DB垂直,釣魚竿DB與地面AF平行,則支架CD的長度為 cm(精確到0.1cm);(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如圖2,保持(1)中支架AB與地面的夾角不變,調節支架CD與AB的夾角,使得∠DCB=85°,若要使釣魚竿DB與地面AF仍然保持平行,則支架CD的長度應該調節為多少?(結果保留根號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com