【題目】(1)問題:如圖在
中,
,
,
為
邊上一點(不與點
,
重合),連接
,過點
作
,并滿足
,連接
.則線段
和線段
的數量關系是_______,位置關系是_______.
(2)探索:如圖,當
點為
邊上一點(不與點
,
重合),
與
均為等腰直角三角形,
,
,
.試探索線段
,
,
之間滿足的等量關系,并證明你的結論;
(3)拓展:如圖,在四邊形
中,
,若
,
,請直接寫出線段
的長.
【答案】(1)=
;
⊥
;(2)
+
=
;(3)2
【解析】
(1)根據同角的余角相等得出∠BAD=∠CAE,可證△ADB≌△AEC,由全等三角形的性質即可得出結果;
(2)連結CE,同(1)的方法證得△ADB≌△AEC,根據全等三角形的性質轉換角度,可得△DCE為直角三角形,即可得,
,
之間滿足的等量關系;
(3)在AD上方作EA⊥AD,連結DE,同(2)的方法證得△DCE為直角三角形,由已知和勾股定理求得DE的長,再根據等腰直角三角形的性質和勾股定理即可求得AD的長.
解:=
,
⊥
,理由如下:
∵,
,
∴∠ABC=∠ACB=45°,
∵,
∴,
∴,即
,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,∠ABD=∠ACE=45°,
∴∠ACB+∠ACE=90°,即⊥
,
故答案為:=
;
⊥
.
(2)+
=
,證明如下:
如圖,連結CE,
∵與
均為等腰直角三角形,
∴∠ABC=∠ACB=45°,,即
,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,∠ABD=∠ACE=45°,
∴∠ACB+∠ACE=90°,即⊥
,則△DCE為直角三角形,
∴+
=
,
∴+
=
;
(3)如圖,作EA⊥AD,使得AE=AD,連結DE、CE,
∵,
∴,AB=AC,
∵,AE=AD,
∴,
,
∴,即
,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,
∵,則△DCE為直角三角形,
∵,
,
∴,則
,
在Rt△ADE中,AD=AE,
∴,
則.
科目:初中數學 來源: 題型:
【題目】某校組織一項球類對抗賽,在本校隨機調查了若干名學生,對他們每人最喜歡的球類運動進行了統計,并繪制如圖1、圖2所示的條形和扇形統計圖.
根據統計圖中的信息,解答下列問題:
(1)求本次被調查的學生人數,并補全條形統計圖;
(2)若全校有1500名學生,請你估計該校最喜歡籃球運動的學生人數;
(3)根據調查結果,請你為學校即將組織的一項球類比賽提出合理化建議.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).
(1)求該拋物線的解析式;
(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD內接于⊙O,DA、CB的延長線交于點P,連接AC、BD,BD=BC.
(1)證明:AB平分∠PAC;
(2)若AC是直徑,AC=5,BC=4,求DC長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據調查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統計圖.
根據以上信息,解答下列問題:
(1)這次調查一共抽取了 名學生,其中安全意識為“很強”的學生占被調查學生總數的百分比是 ;
(2)請將條形統計圖補充完整;
(3)該校有1800名學生,現要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據調查結果,估計全校需要強化安全教育的學生約有 名.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點.
(1)求m的值及C點坐標;
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由;
(3)P為拋物線上一點,它關于直線BC的對稱點為Q.
①當四邊形PBQC為菱形時,求點P的坐標;
②點P的橫坐標為t(0<t<4),當t為何值時,四邊形PBQC的面積最大,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一根竹竿長米,先像
靠墻放置,與水平夾角為
,為了減少占地空間,現將竹竿像
放置,與水平夾角為
,則竹竿讓出多少水平空間( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形中,
,
,
,
,點
從點
出發(不含點
)以
的速度沿
的方向運動到點
停止,點
出發
后,點
才開始從點
出發以
的速度沿
的方向運動到點
停止,當點
到達點
時,點
恰好到達點
.
(1)當點到達點
時,
的面積為
,求
的長;
(2)在(1)的條件下,設點運動時間為
,運動過程中
的面積為
,請用含
的式子表示面積
,并直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊的邊長為
,點
、
分別是邊
、
上的動點,點
、
分別從頂點
、
同時出發,且它們的速度都為
.
(1)如圖1,連接,求經過多少秒后,
是直角三角形;
(2)如圖2,連接、
交于點
,在點
、
運動的過程中,
的大小是否變化?若變化,請說明理由;若不變,請求出它的度數.
(3)如圖3,若點、
運動到終點后繼續在射線
、
上運動,直線
、
交于點
,則
的大小是否變化?若變化,請說明理由;若不變,請求出它的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com