【題目】如圖,△ABC中,AB=BC=5cm,AC=6cm,點P從頂點B出發,沿B→C→A以每秒1cm的速度勻速運動到A點,設運動時間為x秒,BP長度為ycm.某學習小組對函數y隨自變量x的變化而變化的規律進行了探究.下面是他們的探究過程,請補充完整:
(1)通過取點,畫圖,測量,得到了x(秒)與y(cm)的幾組對應值:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
y | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 4.5 | 4.1 | 4 | 4.5 | 5.0 |
要求:補全表格中相關數值(保留一位小數);
(2)在平面直角坐標系中,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;
(3)結合畫出的函數圖象,解決問題:當x約為______時,BP=CP.
【答案】(1)見解析,5.0;4.1;(2)見解析;(3)2.5或9.1
【解析】
(1)根據點P在第5秒與第9秒的位置,分別求出BP的長,即可得到答案;
(2)根據表格中的x,y的對應值,描點、連線,畫出函數圖象,即可;
(3)令CP=y′,確定P在BC和AC上時,得y′=-x+5 或y′=x-5,畫出圖象,得到圖象的交點的橫坐標,即可求解.
(1)當x=5時,點P與點C重合,y=5,
當x=9時,點P在AC邊上,且CP=9×1-5=4cm,
過點B作BD⊥AC于點D,則CD=AC=3cm,BD=
cm,
∴DP=CP-CD=4-3=1cm,BP=cm,即:y=4.1.
如下表:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
y | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 4.5 | 4.1 | 4.0 | 4.1 | 4.5 | 5.0 |
故答案為:5.0;4.1;
(2)描點、連線,畫出函數圖象如下:
(3)令CP=y′,
當0≤x≤5時, y′=-x+5;
當5<x≤11時,y′=x-5,
畫出圖象可得:當x=2.5或9.1時,BP=PC.
故答案為:2.5或9.1.
科目:初中數學 來源: 題型:
【題目】如圖,是以
為直徑的
上的一點,
于點
,過點
作
的切線,與
的延長線相交于點
,點
是
的中點,連結
交
于點
(1)求證:是
的切線;
(2)求證:;
(3)若,且
的半徑長為
,求
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,△ABC三個頂點的坐標分別為A(1,0),B(2,-3),C(4,-2).
(1)在圖中作出△ABC關于x軸對稱的圖形△A1B1C1.
(2)作出△A1B1C1向左平移4個單位長度后得到的△A2B2C2,并直接寫出點C2的坐標_____.
(3)△A2B2C2的面積是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角△ABC,AB⊥BC,AB=BC,點C在第一象限.已知點A(m,0),B(0,n)(n>m>0),點P在線段OB上,且OP=OA.
(1)點C的坐標為 (用含m,n的式子表示)
(2)求證:CP⊥AP.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《北京中小學語文學科教學21條改進意見》中的第三條指出:“在教學中重視對國學經典文化的學習,重視歷史文化的熏陶,加強與革命傳統教育的結合,使學生了解中華文化的悠久歷史,增強民族文化自信和價值觀自信,使語文教學成為涵養社會主義核心價值觀的重要源泉之一”.為此,昌平區掀起了以“閱讀經典作品,提升思維品質”為主題的讀書活動熱潮,在一個月的活動中隨機調查了某校初二年級學生的周人均閱讀時間的情況,整理并繪制了如下的統計圖表:
某校初二年級學生周人均閱讀時間頻數分布表
周人均閱讀時間x (小時) | 頻數 | 頻率 |
0≤x<2 | 10 | 0.025 |
2≤x<4 | 60 | 0.150 |
4≤x<6 | a | 0.200 |
6≤x<8 | 110 | 0.275 |
8≤x<10 | 100 | 0.250 |
10≤x<12 | 40 | b |
合計 | 400 | 1.000 |
請根據以上信息,解答下列問題:
(1)在頻數分布表中a=______,b=______;
(2)補全頻數分布直方圖;
(3)若該校有1600名學生,根據調查數據請你估計,該校學生周人均閱讀時間不少于6小時的學生大約有______人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC內接于⊙O,點C在劣弧AB上(不與點A,B重合),點D為弦BC的中點,DE⊥BC,DE與AC的延長線交于點E,射線AO與射線EB交于點F,與⊙O交于點G,設∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)點點同學通過畫圖和測量得到以下近似數據:
ɑ | 30° | 40° | 50° | 60° |
β | 120° | 130° | 140° | 150° |
γ | 150° | 140° | 130° | 120° |
猜想:β關于ɑ的函數表達式,γ關于ɑ的函數表達式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校八年級數學興趣小組對“三角形內角或外角平分線的夾角與第三個內角的數量關系”進行了探究.
(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點P,∠A=64°,則∠BPC= ;
(2)如圖2,△ABC的內角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點E.其中∠A=α,求∠BEC.(用α表示∠BEC);
(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點Q,請你寫出∠BQC與∠A的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠B=90°∠A
(1)如圖1,求證:AB=AC;
(2)如圖2,若∠BAC=90°,點D為AB上一點,過點B作直線CD的垂線,垂足為E,連接AE, 求∠AEC的度數;
(3)如圖3,在(2)的條件下,過點A作AE的垂線交CE于點F,連接BF,若∠ABF-∠EAB=15°,G為DF上一點,連接AG,若∠AGD=∠EBF,AG=6,求CF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com