【題目】已知二次函數(
,
、
、
為常數)的圖象如圖所示,下列
個結論:①
;②
;③
;④
;⑤
為常數,且
.其中正確的結論有( )
A. 2個 B. 3個 C. 4個 D. 5個
【答案】B
【解析】
①開口向下,a<0;對稱軸在y軸的右側,a、b異號,則b>0;拋物線與y軸的交點在x軸的上方,c>0,則abc<0,所以①不正確;
②當x=-1時,y=a-b+c=0,即a+c=b,所以②不正確;
③對稱軸為直線x=1,則x=2時圖象對象對應的點在x軸上方,則y=4a+2b+c>0,所以③正確;
④對稱軸x==1,則a=-
b,而a-b+c=0,則-
b-b+c=0,2c=3b,所以④不正確;
⑤開口向下,當x=1,y有最大值a+b+c;當x=m(m≠1)時,y=am2+bm+c,則a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正確.
故選A.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于點G,下列結論:①;②AG=
GC;③BE+DF=EF;④
.其中正確的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC和△DEF為等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,點E在AB上,點F在射線AC上.
(1)如圖1,若∠BAC=60°,點F與點C重合,
①求證:AF=AE+AD.
②求證:AD∥BC.
(2)如圖2,若AD=AB,那么線段AF,AE,BC之間存在怎樣的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面內,若點P與△ABC三個頂點中的任意兩個頂點連接形成的三角形都是等腰三角形,則稱點P是△ABC的巧妙點.
(1)如圖1,求作△ABC的巧妙點P(尺規作圖,不寫作法,保留作圖痕跡).
(2)如圖2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙點P (尺規作圖,不寫作法,保留作圖痕跡),并直接寫出∠BPC的度數是 .
(3)等邊三角形的巧妙點的個數有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在△ABC中,AB=AC,D是BC的中點,動點E在邊AB上(點E不與點A,B重合), 動點F在射線AC上,連結DE, DF.
(1)如圖1,當∠DEB=∠DFC=90°時,直接寫出DE與DF的數量關系;
(2)如圖2,當∠DEB+∠DFC=180°(∠DEB≠∠DFC)時,猜想DE與DF的數量關系,并證明;
(3)當點E,D,F在同一條直線上時,
①依題意補全圖3;
②在點E運動的過程中,是否存在EB=FC? ( 填“存在”或“不存在” ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc<0;②a-b+c>0;③ 2a+b=0;④b2-4ac>0 ⑤a+b+c>m(am+b)+c,(m>1的實數),其中正確的結論有()
A. 1個 B. 2 C. 3 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將線段繞點
逆時針旋轉角度
得到線段
,連接
得
,又將線段
繞點
逆時針旋轉
得線段
(如圖①).
求
的大。ńY果用含
的式子表示);
又將線段
繞點
順時針旋轉
得線段
,連接
(如圖②)求
;
連接
、
,試探究當
為何值時,
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=60°,點P是∠AOB內的定點且OP=,若點M、N分別是射線OA、OB上異于點O的動點,則△PMN周長的最小值是( )
A. B.
C. 6 D. 3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com