【題目】如圖,已知一次函數y= kx +b的圖象交反比例函數的圖象于點A(2,-4)和點B(h,-2),交x軸于點C.
(1)求這兩個函數的解析式;
(2)連接QA、OB.求△AOB的面積;
(3)請直接寫出不等式的解集.
【答案】(1)反比例函數是:,一次函數是:
;(2)6;(3)
或
【解析】
(1)先把點A的坐標代入反比例函數表達式,從而的反比例函數解析式,再求點B的坐標,然后代入反比例函數解析式求出點B的坐標,再利用待定系數法求解即可;
(2)根據割補法計算即可;
(3)觀察函數圖象即可求出不等式的解集.
(1)把A(2,4)的坐標代入得:m=2×(-4)8,
∴反比例函數的表達式是;
把B(h,-2)的坐標代入得2=
,
解得:h=4,
∴B點坐標為(4,2),
把A(2,4)、B(4,2)的坐標代入y=kx+b得,
解得,
∴一次函數表達式為y=x6;
(2)當y=0時,x=0+6=6,
∴OC=6,
∴△AOB的面積=S△AOC-S△BOC= ×6×4
×6×2=6;
(3)由圖象知,一次函數值大于反比例函數值的x的范圍為0<x<2或x>4.
科目:初中數學 來源: 題型:
【題目】旋轉變換是解決數學問題中一種重要的思想方法,通過旋轉變換可以將分散的條件集中到一起,從而方便解決問題.
已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.
(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉60°到△AFB的位置,連接DF,
①求∠DAF的度數;
②求證:△ADE≌△ADF;
(2)如圖2,當α=90°時,猜想BD、DE、CE的數量關系,并說明理由;
(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】反比例函數y=(a>0,a為常數)和y=
在第一象限內的圖象如圖所示,點M在y=
的圖象上,MC⊥x軸于點C,交y=
的圖象于點A;MD⊥y軸于點D,交y=
的圖象于點B,當點M在y=
的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電視臺為了解本地區電視節目的收視情況,對部分市民開展了“你最喜愛的電視節目”的問卷調查(每人只填寫一項),根據收集的數據繪制了兩幅不完整的統計圖(如圖所示),根據要求回答下列問題:
(1)本次問卷調查共調查了________名觀眾;圖②中最喜愛“新聞節目”的人數占調查總人數的百分比為________;
(2)補全圖①中的條形統計圖;
(3)現有最喜愛“新聞節目”(記為),“體育節目”(記為
),“綜藝節目”(記為
),“科普節目”(記為
)的觀眾各一名,電視臺要從四人中隨機抽取兩人參加聯誼活動,請用列表或畫樹狀圖的方法,求出恰好抽到最喜愛“
”和“
”兩位觀眾的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,點E,F分別為BC,AB邊的中點.連接AE、DF,兩線交于點H,連接BH并延長,交邊AD于點G.下列結論:①△ABE≌△DAF,②cos∠BAE=,③
:S四邊形CDHE=1:11,④AG=
其中正確的是( )
A.①③④B.①②③
C.①④D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=100°,OA=12,C是OB的中點,CD⊥OB交于點D,以OC為半徑的
交OA于點E,則圖中陰影部分的面積是( 。
A.6B.6
C.12π+18
D.12π+36
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:在平面直角坐標系中,若兩點P、Q的坐標分別是P(x1,y1)、
Q(x2,y2),則P、Q這兩點間的距離為|PQ|=.如P(1,2),Q(3,4),則|PQ|=
=2
.
對于某種幾何圖形給出如下定義:符合一定條件的動點形成的圖形,叫做符合這個條件的點的軌跡.如平面內到線段兩個端點距離相等的點的軌跡是這條線段的垂直平分線.
解決問題:如圖,已知在平面直角坐標系xOy中,直線y=kx+交y軸于點A,點A關于x軸的對稱點為點B,過點B作直線l平行于x軸.
(1)到點A的距離等于線段AB長度的點的軌跡是 ;
(2)若動點C(x,y)滿足到直線l的距離等于線段CA的長度,求動點C軌跡的函數表達式;
問題拓展:(3)若(2)中的動點C的軌跡與直線y=kx+交于E、F兩點,分別過E、F作直線l的垂線,垂足分別是M、N,求證:①EF是△AMN外接圓的切線;②
為定值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】成都市為了扎實推進精準扶貧工作,出臺了民生兜底、醫保脫貧、教育救助、產業扶持、養老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A,B,C,D類貧困戶,為檢查幫扶措施是否落實,隨機抽取了若干貧困戶進行調查,現將收集的數據繪制成如圖兩幅不完整的統計圖.請根據圖中信息,回答下列問題:
(1)本次抽樣調查了多少戶貧困戶?
(2)成都市共有9100戶貧困戶,請估計至少得到4種幫扶措施的大約有多少戶?
(3)2020年是精準扶貧攻關年,為更好地做好工作,現準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行試點幫扶,請用樹狀圖或列表法求出恰好選中乙和丙的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,單位長度為1的網格坐標系中,一次函數 與坐標軸交于A、B兩點,反比例函數
(x>0)經過一次函數上一點C(2,a).
(1)求反比例函數解析式,并用平滑曲線描繪出反比例函數圖像;
(2)依據圖像直接寫出當時不等式
的解集;
(3)若反比例函數與一次函數
交于C、D兩點,使用直尺與2B鉛筆構造以C、D為頂點的矩形,且使得矩形的面積為10.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com