【題目】如圖,△ABC是⊙O內接正三角形,將△ABC繞點O順時針旋轉30°得到△DEF,DE分別交AB,AC于點M,N,DF交AC于點Q,則有以下結論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長等于AC的長;④NQ=QC.其中正確的結論是、佗冖邸。ò阉姓_的結論的序號都填上)
【答案】①②③
【解析】解:連結OA、OD、OF、OC、DC、AD、CF,如圖, ∵△ABC繞點O順時針旋轉30°得到△DEF,
∴∠AOD=∠COF=30°,
∴∠ACD= ∠AOD=15°,∠FDC=
∠COF=15°,
∴∠DQN=∠QCD+∠QDC=15°+15°=30°,所以①正確;
同理可得∠AMN=30°,
∵△DEF為等邊三角形,
∴DE=DF,
∴弧DE=弧DF,
∴弧AE+弧AD=弧DC+弧CF,
而弧AD=弧CF,
∴弧AE=弧DC,
∴∠ADE=∠DAC,
∴ND=NA,
在△DNQ和△ANM中 ,
∴△DNQ≌△ANM(AAS),所以②正確;
∵∠ACD=15°,∠FDC=15°,
∴QD=QC,
而ND=NA,
∴ND+QD+NQ=NA+QC+NQ=AC,
即△DNQ的周長等于AC的長,所以③正確;
∵△DEF為等邊三角形,
∴∠NDQ=60°,
而∠DQN=30°,
∴∠DNQ=90°,
∴QD>NQ,
∵QD=QC,
∴QC>NQ,所以④錯誤.
所以答案是①②③.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=12,點E是BC的中點,連接AE,將△ABE沿AE折疊,點B落在點F處,連接FC,則sin∠ECF=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD頂點A、B在x軸上,點D在y軸上,函數y= (x>0)的圖象經過點C(2,3),直線AD交雙曲線于點E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點F.
(1)若EB= OD,求點E的坐標;
(2)若四邊形ABCD為平行四邊形,求過A、D兩點的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2015本溪,第9題,3分)如圖,在平面直角坐標系中,直線AB與x軸交于點A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點O的對應點C恰好落在雙曲線(
)上,則k的值為( 。
A. 4 B. ﹣2 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線與雙曲線
交于
兩點,且點
的橫坐標為
.
(1)求的值;
(2)若雙曲線上一點
的縱坐標為8,求
的面積;
(3)過原點的另一條直線
交雙曲線
于
兩點(
點在第一象限),若由點
為頂點組成的四邊形面積為
,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).
(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數關系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】南山植物園中現有A、B兩個園區,已知A園區為長方形,長為(x+y)米,寬為(x﹣y)米;B園區為正方形,邊長為(x+3y)米.
(1)請用代數式表示A、B兩園區的面積之和并化簡;
(2)現根據實際需要對A園區進行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區的長比寬多350米,且整改后兩園區的周長之和為980米.
①求x、y的值;
②若A園區全部種植C種花,B園區全部種植D種花,且C、D兩種花投入的費用與吸引游客的收益如表:
求整改后A、B兩園區旅游的凈收益之和.(凈收益=收益﹣投入)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com