【題目】如圖,已知直線與
軸交于點
,與反比例函數
的圖象交于
,
兩點,
的面積為
.
(1)求一次函數的解析式;
(2)求點坐標和反比例函數的解析式.
科目:初中數學 來源: 題型:
【題目】2019年2月18日,《感動中國2018年度人物頒獎盛典》在央視綜合頻道播出,其中鄉村教師張玉滾的事跡令人非常感動某校團委組織“支援鄉村教育,幫助教師張玉滾”的捐款活動,以下為九年級(1)班捐款情況:
捐款金額(元) | 5 | 10 | 20 | 50 |
人數(人) | 12 | 13 | 16 | 11 |
則這個班學生捐款金額的中位數和眾數分別為( )
A.15,50B.20,20C.10,20D.20,50
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,點、點
在
軸上(點
在點
的左側),點
在第一象限,滿足
為直角,且恰使
∽△
,拋物線
經過
、
、
三點.
(1)求線段、
的長;
(2)求點的坐標及該拋物線的函數關系式;
(3)在軸上是否存在點
,使
為等腰三角形?若存在,求出所有符合條件的
點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB>AC,∠BAC的平分線交外接圓于D,DE⊥AB于E,DM⊥AC于M.
(1)求證:BE=CM.
(2)求證:AB﹣AC=2BE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(問題情境)
張老師給愛好學習的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.
小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
[變式探究]
如圖3,當點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;
請運用上述解答中所積累的經驗和方法完成下列兩題:
[結論運用]
如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
[遷移拓展]
圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且ADCE=DEBC,AB=2dm,AD=3dm,BD=
dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax+bx+c的x,y的對應值如下表:
x | … | -1 | 0 | 1 | 2 | … | |||
y | … | -1 | m | 1 | n | … |
下列關于該函數性質的判斷:①該二次函數有最大值;②當x>0時,函數y隨x的增大而減小;③不等式y<﹣1的解集是﹣1<x<2;④關于x的一元二次方程ax2+bx+c=0的兩個實數根分別位于﹣1<x<和
<x<2之間.其中正確結論的個數有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰△ABC的頂角∠A=36°,若將其繞點C順時針旋轉36°,得到△,點B′在AB邊上,
交AC于E,連接AA′.有下列結論:①△ABC≌△
;②四邊形
是平行四邊形;③圖中所有的三角形都是等腰三角形;其中正確的結論是( )
A.①②B.① ③C.②③D.① ② ③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com