【題目】在社區全民健身活動中,父子倆參加跳繩比賽.相同時間內父親跳180個,兒子跳210個.已知兒子每分鐘比父親多跳20個,父親、兒子每分鐘各跳多少個?
科目:初中數學 來源: 題型:
【題目】
(1)將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉,使點D、A(A′)、B在同一條直線上,如圖2所示. 觀察圖2可知:與BC相等的線段是 , ∠CAC′=°.
(2)①如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數量關系,并證明你的結論. 拓展延伸
②如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H.若AB=kAE,AC=kAF,試探究HE與HF之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于點E,BE=4,則AC長為( )
A. 2 B. 3 C. 4 D. 以上都不對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,小慧同學把一個正三角形紙片(即△OAB)放在直線l1上.OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順吋針方向旋轉120°,此時點O運動到了點O1處,點B運動到了點B1處;小慧又將三角形紙片AO1B1 , 繞點B1按順吋針方向旋轉 120°,此時點A運動到了點A1處,點O1運動到了點O2處(即頂點O經過上述兩次旋轉到達O2處). 小慧還發現:三角形紙片在上述兩次旋轉的過程中.頂點O運動所形成的圖形是兩段圓弧,即 和
,頂點O所經過的路程是這兩段圓弧的長度之和,并且這兩段圓弧與直線l1圍成的圖形面積等于扇形A001的面積、△AO1B1的面積和扇形B1O1O2的面積之和.
小慧進行類比研究:如圖②,她把邊長為1的正方形紙片0ABC放在直線l2上,0A邊與直線l2重合,然后將正方形紙片繞著頂點A按順時針方向旋轉90°,此時點O運動到了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B2處,小慧又將正方形紙片 AO1C1B1繞頂點B1按順時針方向旋轉90°,….按上述方法經過若干次旋轉后,她提出了如下問題:
問題①:若正方形紙片0ABC按上述方法經過3次旋轉,求頂點0經過的路程,并求頂點O在此運動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OABC按上述方法經過5次旋轉.求頂點O經過的路程;
問題②:正方形紙片OABC按上述方法經過多少次旋轉,頂點0經過的路程是 ?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l經過點A(1,0),與雙曲線y= (x>0)交于點B(2,1).過點P(p,p﹣1)(p>1)作x軸的平行線分別交雙曲線y=
(x>0)和y=﹣
(x<0)于點M、N.
(1)求m的值和直線l的解析式;
(2)若點P在直線y=2上,求證:△PMB∽△PNA;
(3)是否存在實數p,使得S△AMN=4S△AMP?若存在,請求出所有滿足條件的p的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P為BC的中點,動點Q從點P出發,沿射線PC方向以2cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設點Q運動的時間為t s.
(1)當t=1.2時,判斷直線AB與⊙P的位置關系,并說明理由;
(2)已知⊙O為△ABC的外接圓.若⊙P與⊙O相切,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果三角形三邊的長a、b、c滿足 =b,那么我們就把這樣的三角形叫做“勻稱三角形”,如:三邊長分別為1,1,1或3,5,7,…的三角形都是“勻稱三角形”.
(1)如圖1,已知兩條線段的長分別為a、c(a<c).用直尺和圓規作一個最短邊、最長邊的長分別為a、c的“勻稱三角形”(不寫作法,保留作圖痕跡);
(2)如圖2,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作⊙O的切線交AB延長線于點E,交AC于點F,若 ,判斷△AEF是否為“勻稱三角形”?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知兩個二次函數y1=x2+bx+c和y2=x2+m.對于函數y1 , 當x=2時,該函數取最小值.
(1)求b的值;
(2)若函數y1的圖象與坐標軸只有2個不同的公共點,求這兩個公共點間的距離;
(3)若函數y1、y2的圖象都經過點(1,﹣2),過點(0,a﹣3)(a為實數)作x軸的平行線,與函數y1、y2的圖象共有4個不同的交點,這4個交點的橫坐標分別是x1、x2、x3、x4 , 且x1<x2<x3<x4 , 求x4﹣x3+x2﹣x1的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com