【題目】如圖,放置在水平桌面上的臺燈燈臂AB長為42cm,燈罩BC長為32cm,底座厚度為2cm,燈臂與底座構成的∠BAD=60°.使用發現,光線最佳時燈罩BC與水平線所成的角為30°,此時燈罩頂端C到桌面的高度CE是多少cm?
【答案】此時燈罩頂端C到桌面的高度CE是(2118)cm.
【解析】
過點B作BM⊥CE于點M,BF⊥DA于點F.在Rt△BCM和Rt△ABF中,通過解直角三角形可求出CM、BF的長,再由CE=CM+BF+ED即可求出CE的長.
過點B作BM⊥CE于點M,BF⊥DA于點F,如圖所示.
在Rt△BCM中,∵BC=32cm,∠CBM=30°,∴CM=BCsin∠CBM=16cm.
在Rt△ABF中,AB=42cm,∠BAD=60°,∴BF=ABsin∠BAD=21cm.
∵∠ADC=∠BMD=∠BFD=90°,∴四邊形BFDM為矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+212=21
18(cm).
答:此時燈罩頂端C到桌面的高度CE是(2118)cm.
科目:初中數學 來源: 題型:
【題目】拋物線y=﹣x2+
x﹣1與x軸交于點A,B(點A在點B的左側),與y軸交于點C,其頂點為D.將拋物線位于直線l:y=t(t<
)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個“M”形的新圖象.
(1)點A,B,D的坐標分別為 , , ;
(2)如圖①,拋物線翻折后,點D落在點E處.當點E在△ABC內(含邊界)時,求t的取值范圍;
(3)如圖②,當t=0時,若Q是“M”形新圖象上一動點,是否存在以CQ為直徑的圓與x軸相切于點P?若存在,求出點P的坐標;若不存在,請說明理由.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線與x軸交于A、B兩點
點A在點B的左側
.
當
時,拋物線與y軸交于點C.
直接寫出點A、B、C的坐標;
如圖1,連接AC,在x軸上方的拋物線上有一點D,若
,求點D的坐標;
如圖2,點P為拋物線位于第一象限圖象上一動點,過P作
,求PQ的最大值;
如圖3,若點M為拋物線位于x軸上方圖象上一動點,過點M作
軸,垂足為N,直線MN上有一點H,滿足
與
互余,試判斷HN的長是否變化,若變化,請說明理由,若不變,請求出HN長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點P是對角線AC上一動點(不與A、C 重合),連接PB,過點P作PE⊥PB,交射線DC于點E,已知AD=3,sin∠BAC=.設AP的長為x.
(1)AB等于多少;當x=1時,等于多少;
(2)①試探究: 否是定值?若是,請求出這個值;若不是,請說明理由;
②連接BE,設△PBE的面積為S,求S的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,DE平分∠ADC交AB于點E,∠BCD=60°,AD=AB,連接OE.下列結論:①SABCD=ADBD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正確的個數有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】不透明的袋子中裝有4個相同的小球,它們除顏色外無其它差別,把它們分別標號:1、2、3、4,
(1)隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,用列表或畫樹狀圖的方法求出“兩次取的球標號相同”的概率
(2)隨機摸出兩個小球,直接寫出“兩次取出的球標號和等于4”的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com