【題目】如圖,拋物線與x軸交于
兩點,直線
與y 軸交于點
,與
軸交于點
,點
是
軸上方的拋物線上一動點,過點
作
軸于點
,交直線
于點
.設點
的橫坐標為
。
(1)求拋物線的解析式;
(2)若,求
的值;
(3)若點是點
關于直線
的對稱點、是否存在點
,使點
落在y軸上?若存在,求出相應的點
的坐標;若不存在,請說明理由。
【答案】(1)y=-x2+4x+5.(2) m=2或m=.(3) 點P坐標為(-
,
),(4,5),(3-
,2
-3).
【解析】
試題(1)利用待定系數法求出拋物線的解析式;
(2)用含m的代數式分別表示出PE、EF,然后列方程求解;
(3)解題關鍵是識別出當四邊形PECE′是菱形,然后根據PE=CE的條件,列出方程求解;當四邊形PECE′是菱形不存在時,P點y軸上,即可得到點P坐標.
試題解析:(1)將點A、B坐標代入拋物線解析式,得:
,
解得,
∴拋物線的解析式為:y=-x2+4x+5.
(2)∵點P的橫坐標為m,
∴P(m,-m2+4m+5),E(m,-m+3),F(m,0).
∴PE=|yP-yE|=|(-m2+4m+5)-(-m+3)|=|-m2+
m+2|,
EF=|yE-yF|=|(-m+3)-0|=|-
m+3|.
由題意,PE=5EF,即:|-m2+m+2|=5|-
m+3|=|-
m+15|
①若-m2+m+2=-
m+15,整理得:2m2-17m+26=0,
解得:m=2或m=;
②若-m2+m+2=-(-
m+15),整理得:m2-m-17=0,
解得:m=或m=
.
由題意,m的取值范圍為:0<m<5,故m=、m=
這兩個解均舍去.
∴m=2或m=.
(3)假設存在.
作出示意圖如下:
∵點E、E′關于直線PC對稱,
∴∠1=∠2,CE=CE′,PE=PE′.
∵PE平行于y軸,∴∠1=∠3,
∴∠2=∠3,∴PE=CE,
∴PE=CE=PE′=CE′,即四邊形PECE′是菱形.
當四邊形PECE′是菱形存在時,
由直線CD解析式y=-x+3,可得OD=4,OC=3,由勾股定理得CD=5.
過點E作EM∥x軸,交y軸于點M,易得△CEM∽△CDO,
∴,
即,
解得CE=|m|,
∴PE=CE=|m|,
又由(2)可知:PE=|-m2+m+2|
∴|-m2+m+2|=
|m|.
①若-m2+m+2=
m,整理得:2m2-7m-4=0,
解得m=4或m=-;
②若-m2+m+2=-
m,整理得:m2-6m-2=0,解得m1=3+
,m2=3-
.
由題意,m的取值范圍為:-1<m<5,故m=3+這個解舍去.
當四邊形PECE′是菱形這一條件不存在時,
此時P點橫坐標為0,E,C,E'三點重合與y軸上,菱形不存在,即P點為(0,5).
綜上所述,存在滿足條件的點P,可求得點P坐標為(-,
),(4,5),(3-
,2
-3)
科目:初中數學 來源: 題型:
【題目】如圖所示是二次函數y=ax2+bx+c的圖象.下列結論:①二次三項式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對稱軸是直線x=-1;⑤4a-2b+c<0.其中正確的結論有______________.(把所有正確結論的序號都填在橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中 ,∠A=∠B,D、E是邊AB上的點,DG∥AC,EF∥BC,DG、EF相 交于點H.
(1)∠HDE與∠HED是否相等?并說明理由.
解:∠HDE=∠HED.理由如下:
∵DG∥AC(已知)
∴ = ( )
∵ EF∥BC (已知)
∴ = ( )
又∵∠A=∠B (已知)
∴ = ( ).
(2)如果∠C=90°,DG、 EF有何位置關系?并仿照 (1)中的解答方法說明理由.
解: .理由如下:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結果精確到0.1m).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學生的學業負擔過重會嚴重影響學生對待學習的態度.為此我市教育部門對部分學校的八年級學生對待學習的態度進行了一次抽樣調查(把學習態度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統計圖(不完整).請根據圖中提供的信息,解答下列問題:
(1)此次抽樣調查中,共調查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數;
(4)根據抽樣調查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態度達標(達標包括A級和B級)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】汽車專賣店銷售某種型號的汽車.已知該型號汽車的進價為10萬元/輛,銷售一段時間后發現:當該型號汽車售價定為15萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出2輛.
(1)若要平均每周售出汽車不低于15輛,該汽車的售價最多定為多少萬元?
(2)該店計劃下調售價,盡可能增加銷量,減少庫存,但要確保平均每周的銷售利潤為40萬元,每輛汽車的售價定為多少合適?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了傳承中華優秀傳統文化,某校學生會組織了一次全校1200名學生參加的“漢字聽寫”大賽,并設成績優勝獎.
賽后發現所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中100名學生的成績作為樣本進行整理,得到下列不完整的統計圖表:
成績x/分 | 頻數 | 頻率 |
50≤x<60 | 10 | 0.10 |
60≤x<70 | 25 | 0.25 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.20 |
90≤x≤100 | 15 | 0.15 |
成績在70≤x<80這一組的是:
70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79
請根據所給信息,解答下列問題:
(1)a= ,b= ;
(2)請補全頻數分布直方圖;
(3)這次比賽成績的中位數是 ;
(4)若這次比賽成績在78分以上(含78分)的學生獲得優勝獎,則該校參加這次比賽的1200名學生中獲優勝獎的約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,四邊形ABCD為矩形,點O是AC的中點,過點O的一直線分別與AB、CD交于點E、F,連接BF交AC于點M,連接DE、BO,若∠COB=60°,FO=FC,則下列結論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB:OE=3:2,其中正確結論是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com