精英家教網 > 初中數學 > 題目詳情

【題目】已知,如圖,直線l經過A(4,0)和B(0,4)兩點,拋物線y=a(x﹣h)2的頂點為P(1,0),直線l與拋物線的交點為M.

(1)求直線l的函數解析式;
(2)若SAMP=3,求拋物線的解析式.

【答案】
(1)解:設一次函數解析式為y=kx+b,

把A(4,0),B(0,4)分別代入解析式得 ,

解得

解析式為y=﹣x+4.


(2)解:設M點的坐標為(m,n),

∵SAMP=3,

(4﹣1)n=3,

解得,n=2,

把M(m,2)代入為2=﹣m+4得,m=2,

M(2,2),

∵拋物線y=a(x﹣h)2的頂點為P(1,0),

可得y=a(x﹣1)2

把M(2,2)代入y=a(x﹣1)2得,2=a(2﹣1)2,解得a=2,函數解析式為y=2(x﹣1)2


【解析】(1)設出函數解析式為y=kx+b,利用待定系數法解答即可;(2)根據三角形的面積求出M點的縱坐標,代入直線解析式求出M的橫坐標,再利用P、M的值求出函數解析式.
【考點精析】利用確定一次函數的表達式和二次函數的性質對題目進行判斷即可得到答案,需要熟知確定一個一次函數,需要確定一次函數定義式y=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,連接在一起的兩個等邊三角形的邊長都為2cm,一個微型機器人由點A開始按A→B→C→D→E→C→A→B→C…的順序沿等邊三角形的邊循環移動.當微型機器人移動了2018cm后,它停在了點_____上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們把兩個大小相等,形狀相同的兩個三角形稱之為全等三角形,如果兩個三角形僅僅是形狀相同,我們可以稱之為相似三角形,如圖①△ABC與△DEF形狀相同,我們就可以說△ABC 與△DEF相似,記作△ABC∽△DEF,點A與點D、點B與點E、點C與點F分別是對應點。下面我們就相似三角形的知識進行一些簡單的探索。

(1)觀察下列圖②兩組圖形,相似的一組是 。

(2)如圖③,小明用一張紙遮住了3個三角形的一部分,你是可以畫出這3個三角形的。

提出問題:①如圖,如果A=∠C,∠B=∠D,ABCD,那么第一個三角形與第二個三角形全等嗎?你的判斷是 ,(填“是”或“否”)判斷的依據是

②如圖,如果A=∠E,∠B=∠F,2ABEF,那么第一個三角形與第三個三角形相似嗎?你的判斷是 ,(填“是”或“否”)

(3)由(1)、(2)你可以得出的結論是: 個角分別相等的兩個三角形相似。

(4)用(3)的結論解決下面兩個問題.

①已知:如圖,AB∥CD。AD與BC相交于點O,試說明△ABO∽△DCO。

②已知:如圖,在△ABC中,點D、E、F分別在邊BC、AB、AC上,∠B=∠C=∠EDF,試說明△BDE∽△CFD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一塊等腰直角的三角板ABC,在水平桌面上繞點C按順時針方向旋轉到A′B′C的位置,使A、C、B′三點共線,那么旋轉角度的大小為( )

A.45°
B.90°
C.120°
D.135°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC 頂點的坐標分別為 A (1,-1)、B(3,-1)、C(4,1).

⑴將△ABC向上平移1個單位,再向左平移1個單位,請畫出平移后得到的△A1B1C1并寫出點 A1、B1、C1 的坐標;

⑵若△A1B1C1 與△A1B1D 全等(D 點與 C1 不重合),直接寫出點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點P為EAF平分線上一點,PBAE于B,PCAF于C,點M,N分別是射線AE,AF上的點,且PM=PN.

(1)如圖1,當點M在線段AB上,點N在線段AC的延長線上時,求證:BM=CN;

(2)在(1)的條件下,直接寫出線段AM,AN與AC之間的數量關系 ;

(3)如圖2,當點M在線段AB的延長線上,點N在線段AC上時,若AC:PC=2:1,且PC=4,求四邊形ANPM的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法不正確的是( )

A.a>0
B.c>0
C.
D.b2+4ac>0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在△ABC中,D是BC邊上一點∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,在RtABC中,∠C=90°,∠A=30°,BC=18cm.動點P從點A出發,沿AB向點B運動,動點Q從點B出發,沿BC向點C運動,如果動點P2cm/s,Q1cm/s的速度同時出發,設運動時間為ts),解答下列問題:

1t為何值時,△PBQ是等邊三角形?

2P,Q在運動過程中,△PBQ的形狀不斷發生變化,當t為何值時,△PBQ是直角三角形?說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视