精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .點E為線段BD上任意一點(點E與點B,D不重合),過點E作EF∥CD,與BC相交于點F,連接CE.設BE=x,y=

(1)求BD的長;
(2)如果BC=BD,當△DCE是等腰三角形時,求x的值;
(3)如果BC=10,求y關于x的函數解析式,并寫出自變量x的取值范圍.

【答案】
(1)

解:如圖1,過A作AH⊥BD于H,

∵AD∥BC,AB=AD=5,

∴∠ABD=∠ADB=∠DBC,BH=HD,

在Rt△ABH中,

∵tan∠ABD=tan∠DBC= ,

∴cos∠ABD=

∴BH=DH=4,

∴BD=8;


(2)

解:∵△DCE是等腰三角形,且BC=BD=8,

∴①如圖2,

當CD=DE時,即:CD=DE=BD﹣BE=8﹣x,

過點D作DG⊥BC于G,

在Rt△BDG中,tan∠DBC= ,BD=8,

∴DG= BD= ,BG= BD= ,

∴CG=8﹣BG=

在Rt△CDG中,根據勾股定理得,DG2+CG2=CD2,

∴( 2+( 2=(8﹣x)2,

∴x=8+ (舍)或x=8﹣

②如圖3,

當CE=CD時,

過點C作CG⊥BD,

∴DG=EG= DE,

在Rt△BCG中,BC=8,tan∠DBC=

∴BG= ,

∴DG=BD﹣BG= ,

∴x=BE=BD﹣DE=BD﹣2DG=


(3)

解:∵BF=x,BC=10,

∴FC=10﹣x,

,

∵EF∥DC,

∴△FEB∽△CDB,

= =﹣ x2+ x(0<x<8)


【解析】(1)過A作AH⊥BD于H,再根據AD∥BC,AB=AD=5,可得∠ABD=∠ADB=∠DBC,BH=HD,再根據tan∠ABD=tan ,計算出BH=DH=4,進而得到BD=8;(2)分兩種情況用銳角三角函數計算即可得出結論.(3)首先利用平行線的性質得出△FEB∽△CDB,即可得出y與x的函數關系式;
【考點精析】通過靈活運用梯形的定義和直角梯形,掌握一組對邊平行,另一組對邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形;一腰垂直于底的梯形是直角梯形即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,已知,BCOA,B=A=100°,試解答下列問題:

1)試說明:OBAC

2)如圖,若點EFBC上,且FOC=AOC,OE平分BOF.試求EOC的度數;

3)在(2)小題的條件下,若左右平行移動AC,如圖,那么OCBOFB的比值是否隨之發生變化?若變化,試說明理由;若不變,求出這個比值.

4)在(3)小題的條件下,當OEB=OCA時,試求OCA的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點D為射線BC上一點,連接AD,以AD為直角邊在AD的右側作Rt△ADE,且AD=AE.

(1)填空:當點D在線段BC上時(與點B不重合),則線段CE、BD的數量關系應為________________,線段CE所在的直線與射線BC的位置關系為____________;

(2)如下圖,當點D在線段BC的延長線上時,(1)中的結論是否仍然成立,請證明;

(3)如下圖,點DBC的延長線上,如果AC=cm,△CDE的面積為4cm2時,求線段DE的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學舉行數學知識競賽,分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統計圖.根據圖中所給信息解答下列問題:

(1)二等獎所占的比例是多少?

(2)這次數學知識競賽獲得二等獎的有多少人?

(3)請將條形統計圖補充完整.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊ABC的邊長為10cm,點D是邊AC的中點,動點P從點C出發,沿BC的延長線以2cm/s的速度做勻速運動,設點P的運動時間為t(秒),若BDP是等腰三角形,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠ABD90°,

1)點B在直線   上,點D在直線   外;

2)直線   與直線   相交于點A,點D是直線   與直線   的交點,也是直線   與直線   的交點,又是直線   與直線   的交點;

3)直線   ⊥直線   ,垂足為點   ;

4)過點D有且只有   條直線與直線AC垂直.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2017420日,成都舉行了建城市森林,享低碳生活的垃圾分類推進工作啟動儀式,在成都設置有專門的垃圾存放點,做到日產日清。在平面直角坐標系中xOy,A,B,C三個垃圾存放點的位置如圖1所示,點A在原點,,.某同學利用周末時間調查了這三個存放點的垃圾量,并繪制了如下尚不完整的扇形統計圖(如圖2)。

(1)若C處的垃圾存放量為320千克,求A處的垃圾存放量。

(2)現需要A,C兩處的垃圾分別沿道路AB,CB都運到B處,若點B的橫坐標為50,平面直角坐標系中一個單位長度所表示的實際距離是1米,每運送1千克垃圾1米的費用為0.005元,求本次運送垃圾的總費用。(結果保留整數,參考數據:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果一個正整數能表示成兩個連續偶數的平方差,那么這個正整數為“神秘數”.

如:

因此,4,12,20這三個數都是神秘數.

(1)282012這兩個數是不是神秘數?為什么?

(2)設兩個連續偶數為(其中為非負整數),由這兩個連續偶數構造的神秘數是4的倍數,請說明理由.

(3)兩個連續奇數的平方差(取正數)是不是神秘數?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解本校七年級700名學生上學期參加社會實踐活動的時間,隨機對該年級50名學生進行了調查.根據收集的數據繪制了頻數分布直方圖,則以下說法正確的是( )

A. 學生參加社會實踐活動時間最多的是16 h

B. 學生參加社會實踐活動的時間大多數是12~14 h

C. 學生參加社會實踐活動時間不少于10 h的為84%

D. 由樣本可以估計全年級700人中參加社會實踐活動時間為6~8 h的大約有26人

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视