精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直角三角形的直角頂點在坐標原點,OAB=30°,若點A在反比例函數y=(x>0)的圖象上,則經過點B的反比例函數解析式為(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

【答案】C

【解析】

直接利用相似三角形的判定與性質得出,進而得出SAOD=3,即可得出答案.

過點BBCx軸于點C,過點AADx軸于點D,

∵∠BOA=90°,

∴∠BOC+∠AOD=90°,

∵∠AOD+∠OAD=90°,

∴∠BOC=OAD,

又∵∠BCO=ADO=90°,

∴△BCO∽△ODA,

=tan30°=

,

×AD×DO=xy=3,

SBCO=×BC×CO=SAOD=1,

∵經過點B的反比例函數圖象在第二象限,

故反比例函數解析式為:y=﹣

故選:C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】4件同型號的產品中,有1件不合格品和3件合格品

(1)從這4件產品中隨機抽取1件進行檢測,不放回,再隨機抽取1件進行檢測請用列表法或畫樹狀圖的方法,求兩次抽到的都是合格品的概率.(解答時可用A表示1件不合格品,B、CD分別表示3件合格品

(2)在這4件產品中加入若干件合格品后,進行如下試驗:隨機抽取1件進行檢側,然后放回,多次重復這個試驗,通過大量重復試驗后發現,抽到合格品的頻率穩定在0.95,則可以推算出大約加入多少件合格品?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.

(1)求此反比例函數的表達式;

(2)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,E是AD上的一個動點.

(1)如圖1,連接BD,O是對角線BD的中點,連接OE.當OE=DE時,求AE的長;

(2)如圖2,連接BE,EC,過點E作EFEC交AB于點F,連接CF,與BE交于點G.當BE平分ABC時,求BG的長;

(3)如圖3,連接EC,點H在CD上,將矩形ABCD沿直線EH折疊,折疊后點D落在EC上的點D'處,過點D′作D′NAD于點N,與EH交于點M,且AE=1.

的值;

連接BE,D'MH與CBE是否相似?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,測得B,C兩點的俯角分別為60°45°,已知熱氣球離地面的高度為120m,且大橋與地面在同一水平面上,求大橋BC的長度(結果保留整數,≈1.72).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市在端午節期間開展優惠活動,凡購物者可以通過轉動轉盤的方式享受折扣優惠,本次活動共有兩種方式,方式一:轉動轉盤甲,指針指向A區域時,所購買物品享受9折優惠、指針指向其它區域無優惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針指向每個區域的字母相同,所購買物品享受8折優惠,其它情況無優惠.在每個轉盤中,指針指向每個區城的可能性相同(若指針指向分界線,則重新轉動轉盤)

(1)若顧客選擇方式一,則享受9折優惠的概率為多少

(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優惠的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形中,,交于延長線上的一點,且,連結分別交,于點,連結則下列結論:①;②與全等的三角形共有個;③;④由點,,,構成的四邊形是菱形.其中正確的是(

A.①④B.①③④C.①②③D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(10分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x、y軸交于點B、A,與反比例函數的圖象分別交于點C、D,CEx軸于點E,tanABO=,OB=4OE=2

(1)分別求出該反比例函數和直線AB的解析式;

(2)求出交點D坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在東西方向的海岸線l上有一長為1km的碼頭MN(如圖),在碼頭西端M的正西19.5km處有一觀察站A.某時刻測得一艘勻速直線航行的輪船位于A的北偏西30°,且與A相距40kmB處;經過1小時20分鐘,又測得該輪船位于A的北偏東60°,且與A相距kmC處.

(1)求該輪船航行的速度(保留精確結果);

(2)如果該輪船不改變航向繼續航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视