精英家教網 > 初中數學 > 題目詳情

【題目】某公司根據市場計劃調整投資策略,對,兩種產品進行市場調查,收集數據如表:

項目

產品

年固定成本

(單位:萬元)

每件成本

(單位:萬元)

每件產品銷售價

(萬元)

每年最多可生產的件數

其中是待定常數,其值是由生產的材料的市場價格決定的,變化范圍是,銷售產品時需繳納萬元的關稅,其中為生產產品的件數,假定所有產品都能在當年售出,設生產,兩種產品的年利潤分別為、(萬元),寫出、之間的函數關系式,注明其自變量的取值范圍.

【答案】,

【解析】

根據題意分別表示出A、B兩產品的年利潤即可.

年銷售量為x件,按利潤的計算公式,生產AB兩產品的年利潤y1,y2分別為:

y1=10x﹣(20+mx)=(10﹣m)x﹣20,(0≤x≤200),

y2=18x﹣(40+8x) ﹣x2=﹣x2+10x﹣40,(0≤x≤120).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】無錫市新區某桶裝水經營部每天的房租、人員工資等固定成本為250元,每桶水的進價是5元,規定銷售單價不得高于12元/桶,也不得低于7元/桶,調查發現日均銷售量p(桶)與銷售單價x(元)的函數圖象如圖所示.

(1)求日均銷售量p(桶)與銷售單價x(元)的函數關系;

(2)若該經營部希望日均獲利1350元,那么銷售單價是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:ab、c均為非零實數,且a>b>c,關于x的一元二次方程a≠0)其中一個實數根為2。

(1)填空:4a+2b+c 0,a 0,c 0(填“>”,“<”“=”);

(2)若關于x的一元二次方程a≠0)的兩個實數根,滿足一個根為另一個根的2倍,我們就稱這樣的方程為倍根方程,若原方程是倍根方程,則求a、c之間的關系。

(3)a=1時,設方程的另一根為m(m2),在兩根之間(不包含兩根)的所有整數的絕對值之和是7,求b的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,DABC的邊AB上一點,CEAB,DEAC于點F,若FA=FC.

(1)求證:四邊形ADCE是平行四邊形;

(2)AEEC,EF=EC=1,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點P是正方形ABCD內一點,點P到點A,BD的距離分別為1,2,.△ADP沿點A旋轉至ABP,連接PP,并延長APBC相交于點Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某企業設計了一款工藝品,每件的成本是元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是元時,每天的銷售量是件,而銷售單價每降低元,每天就可多售出件,但要求銷售單價不得低于成本.求銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當的降價措施,經調查發現,如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應降價多少元?請完成下列問題:

(1)未降價之前,某商場襯衫的總盈利為    元.

(2)降價后,設某商場每件襯衫應降價x元,則每件襯衫盈利   元,平均每天可售出   件(用含x的代數式進行表示)

(3)請列出方程,求出x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠計劃生產甲、乙兩種產品共2500噸,每生產1噸甲產品可獲得利潤0.3萬元,每生產1噸乙產品可獲得利潤0.4萬元.設該工廠生產了甲產品x(噸),生產甲、乙兩種產品獲得的總利潤為y(萬元).

1)求yx之間的函數表達式;

2)若每生產1噸甲產品需要A原料0.25噸,每生產1噸乙產品需要A原料0.5噸.受市場影響,該廠能獲得的A原料至多為1000噸,其它原料充足.求出該工廠生產甲、乙兩種產品各為多少噸時,能獲得最大利潤.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视