【題目】某公司根據市場計劃調整投資策略,對,
兩種產品進行市場調查,收集數據如表:
項目 產品 | 年固定成本 (單位:萬元) | 每件成本 (單位:萬元) | 每件產品銷售價 (萬元) | 每年最多可生產的件數 |
其中是待定常數,其值是由生產
的材料的市場價格決定的,變化范圍是
,銷售
產品時需繳納
萬元的關稅,其中
為生產產品的件數,假定所有產品都能在當年售出,設生產
,
兩種產品的年利潤分別為
、
(萬元),寫出
、
與
之間的函數關系式,注明其自變量
的取值范圍.
科目:初中數學 來源: 題型:
【題目】無錫市新區某桶裝水經營部每天的房租、人員工資等固定成本為250元,每桶水的進價是5元,規定銷售單價不得高于12元/桶,也不得低于7元/桶,調查發現日均銷售量p(桶)與銷售單價x(元)的函數圖象如圖所示.
(1)求日均銷售量p(桶)與銷售單價x(元)的函數關系;
(2)若該經營部希望日均獲利1350元,那么銷售單價是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:a、b、c均為非零實數,且a>b>c,關于x的一元二次方程 (a≠0)其中一個實數根為2。
(1)填空:4a+2b+c 0,a 0,c 0(填“>”,“<”或“=”);
(2)若關于x的一元二次方程(a≠0)的兩個實數根,滿足一個根為另一個根的2倍,我們就稱這樣的方程為“倍根方程”,若原方程是倍根方程,則求a、c之間的關系。
(3)若a=1時,設方程的另一根為m(m≠2),在兩根之間(不包含兩根)的所有整數的絕對值之和是7,求b的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D是△ABC的邊AB上一點,CE∥AB,DE交AC于點F,若FA=FC.
(1)求證:四邊形ADCE是平行四邊形;
(2)若AE⊥EC,EF=EC=1,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是正方形ABCD內一點,點P到點A,B和D的距離分別為1,2,
.△ADP沿點A旋轉至△ABP′,連接PP′,并延長AP與BC相交于點Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某企業設計了一款工藝品,每件的成本是元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是
元時,每天的銷售量是
件,而銷售單價每降低
元,每天就可多售出
件,但要求銷售單價不得低于成本.求銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當的降價措施,經調查發現,如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應降價多少元?請完成下列問題:
(1)未降價之前,某商場襯衫的總盈利為 元.
(2)降價后,設某商場每件襯衫應降價x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數式進行表示)
(3)請列出方程,求出x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠計劃生產甲、乙兩種產品共2500噸,每生產1噸甲產品可獲得利潤0.3萬元,每生產1噸乙產品可獲得利潤0.4萬元.設該工廠生產了甲產品x(噸),生產甲、乙兩種產品獲得的總利潤為y(萬元).
(1)求y與x之間的函數表達式;
(2)若每生產1噸甲產品需要A原料0.25噸,每生產1噸乙產品需要A原料0.5噸.受市場影響,該廠能獲得的A原料至多為1000噸,其它原料充足.求出該工廠生產甲、乙兩種產品各為多少噸時,能獲得最大利潤.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com