【題目】某企業設計了一款工藝品,每件的成本是元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是
元時,每天的銷售量是
件,而銷售單價每降低
元,每天就可多售出
件,但要求銷售單價不得低于成本.求銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
科目:初中數學 來源: 題型:
【題目】如圖,直線與
,
軸分別交于點
,
,與反比例函數
圖象交于點
,
,過點
作
軸的垂線交該反比例函數圖象于點
.
求點
的坐標.
若
.
①求的值.
②試判斷點與點
是否關于原點
成中心對稱?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統計圖:
根據以上信息,整理分析數據如下:
(1)寫出表格中a,b,c的值;
(2)分別運用上表中的四個統計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司根據市場計劃調整投資策略,對,
兩種產品進行市場調查,收集數據如表:
項目 產品 | 年固定成本 (單位:萬元) | 每件成本 (單位:萬元) | 每件產品銷售價 (萬元) | 每年最多可生產的件數 |
其中是待定常數,其值是由生產
的材料的市場價格決定的,變化范圍是
,銷售
產品時需繳納
萬元的關稅,其中
為生產產品的件數,假定所有產品都能在當年售出,設生產
,
兩種產品的年利潤分別為
、
(萬元),寫出
、
與
之間的函數關系式,注明其自變量
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F,G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點E在△ABC內,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.
(1)當α=60°時(如圖1),
①判斷△ABC的形狀,并說明理由;
②求證:BD=AE;
(2)當α=90°時(如圖2),求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com