A. | 1:4 | B. | 1:2 | C. | 1:3 | D. | 2:3 |
分析 根據平行四邊形的性質得到AD∥BC,由平行線分線段成比例定理得到$\frac{EF}{BF}=\frac{DE}{CD}$,求得$\frac{EF}{BF}=\frac{1}{2}$,通過△DEF∽△ABF,根據相似三角形的性質即可得到結論.
解答 解:在?ABCD中,
∵AD∥BC,
∴$\frac{EF}{BF}=\frac{DE}{CD}$,
∵DE=$\frac{1}{2}$CD,
∴$\frac{EF}{BF}=\frac{1}{2}$,
∵AB∥CE,
∴△DEF∽△ABF,
∴$\frac{{S}_{△DEF}}{{S}_{△ABF}}$=($\frac{EF}{BF}$)2=($\frac{1}{2}$)2=$\frac{1}{4}$,
故選A.
點評 本題考查了相似三角形的判定和性質,平行四邊形的性質,熟練掌握相似三角形的判定和性質是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com