【題目】如圖⊙O是△ABC的外接圓,圓心O在這個三角形的高AD上,AB=10,BC=12,求⊙O的半徑.
【答案】解:如圖,連接OB.
∵AD是△ABC的高.
∴BD= BC=6
在Rt△ABD中,AD= =
=8.
設圓的半徑是R.
則OD=8﹣R.
在Rt△OBD中,根據勾股定理可以得到:R2=36+(8﹣R)2
解得:R= .
【解析】連接OB,根據垂經定理求出BD的長,在Rt△ABD中由勾股定理求得AD=8,設圓的半徑是R,則OD=8-R,在Rt△OBD中由勾股定理可求得R的值.解答此題的關鍵是作出輔助線OB.注意:垂徑定理和勾股定理常常在一起中應用.
【考點精析】本題主要考查了勾股定理的概念和垂徑定理的相關知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】某機械廠甲、乙兩個生產車間承擔生產同一種零件的任務,甲、乙兩車間共有人,甲車間平均每人每天生產零件
個.乙車間平均每人每天生產零件
個,甲車間每天生產零件總數與乙車間每天生產零件總數之和為
個.
(1)求甲、乙兩車間各有多少人?
(2)該機械廠改進了生產技術.在甲、乙兩車間總人數不變的情況下,從甲車間調出一部分人到乙車間.調整后甲車間平均每人每天生產零件個,乙車間平均每人每天生產零件
個,若甲車間每天生產零件總數與乙車間每天生產零件總數之和不少于
個,求從甲車間最多調出多少人到乙車間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副三角板按如圖所示的方式疊放在一起,兩直角頂點重合于點O.
(1)求∠AOD+∠BOC的度數;
(2)當AB的中點E恰好落在CD的中垂線上時,求∠AOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規定時間內完成;若乙隊單獨施工,則完成工程所需天數是規定天數的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),拋物線y=x2﹣2x+k與x軸交于A,B兩點,與y軸交于點C(0,﹣3).
(1)k= , 點A的坐標為 , 點B的坐標為;
(2)設拋物線y=x2﹣2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由;
(4)在拋物線y=x2﹣2x+k上求出點Q坐標,使△BCQ是以BC為直角邊的直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某人去水果批發市場采購獼猴桃,他看中了A、B兩家獼猴桃.這兩家獼猴桃品質一樣,零售價都為6元/千克,批發價各不相同,
A家規定:批發數量不超過1000千克,按零售價的92%優惠;批發數量不超過2000千克,按零售價的90%優惠;超過2000千克的按零售價的88%優惠.
B家的規定如下表:
數量范圍 (千克) | 0~500 | 500以上~1500 | 1500以上~2500 | 2500以上 |
價格(元) | 零售價的95% | 零售價的85% | 零售價的75% | 零售價的70% |
(1)如果他批發600千克獼猴桃,則他在A 、B兩家批發分別需要多少元?
(2)如果他批發x千克獼猴桃(1500<x<2000),請你分別用含x的代數式表示他在A、B兩家批發所需的費用;
(3)現在他要批發1800千克獼猴桃,你能幫助他選擇在哪家批發更優惠嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某紙品加工廠利用邊角料裁出正方形和長方形兩種硬紙片,長方形的寬與正方形的邊長相等(如圖2),再將它們制作成甲乙兩種無蓋的長方體小盒(如圖1).現將300張長方形硬紙片和150張正方形硬紙片全部用于制作這兩種小盒,可以做成甲乙兩種小盒各多少個?(注:圖1中向上的一面無蓋)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com