【題目】已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2 , 其中結論正確的個數是( )
A.1
B.2
C.3
D.4
【答案】D
【解析】解:如圖: ①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中, ,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正確;
②∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,∴③正確;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,∴②正確;
④∵BD⊥CE,
∴BE2=BD2+DE2 ,
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2 , BC2=2AB2 ,
∵BC2=BD2+CD2 ,
∴2AB2=BD2+CD2 ,
∴BD2=2AB2﹣CD2 ,
∴BE2=BD2+DE2=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2 ,
∴④正確.
故選D.
①由條件證明△ABD≌△ACE,就可以得到結論;
②由條件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出結論;
③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°,進而得出結論;
④△BDE為直角三角形就可以得出BE2=BD2+DE2 , 由△DAE和△BAC是等腰直角三角形就有DE2=2AD2 , BC2=2AB2 , 就有BC2=BD2+CD2就可以得出結論.
科目:初中數學 來源: 題型:
【題目】已知點P(,
)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d=
計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d==
=
=
.
根據以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了綠化環境,育英中學八年級三班同學都積極參加植樹活動,今年植樹節時,該班同學植樹情況的部分數據如圖所示,請根據統計圖信息,回答下列問題:(第(1),(3)小題需列式解答)
(1)八牛級三班共有多少名同學?
(2)條形統計圖中,m= , n=。
(3)扇形統計圖中,算出植樹2棵的人數所對應的扇形圓心角的度數。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在開展“學雷鋒社會實踐”活動中,某校為了解全校1200名學生參加活動的情況,隨機調查了50名學生每人參加活動的次數,并根據數據繪成條形統計圖如圖.
(Ⅰ)求這50個樣本數據的平均數、眾數和中位數;
(Ⅱ)根據樣本數據,估算該校1200名學生共參加了多少次活動?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點,
(1)如圖,E,F分別是AB,AC上的點,且BE=AF,求證:△DEF為等腰直角三角形;
(2)若E,F分別為AB,CA延長線上的點,仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,過點A(,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程
的兩個根.
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標;
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道,無限循環小數都可以轉化為分數.例如:將 轉化為分數時,可設
=x,則x=0.3+
x,解得x=
,即
=
.仿此方法,將
化成分數是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直線上順次取A,B,C三點,分別以AB,BC為邊長在直線的同側作正三角形,作得兩個正三角形的另一頂點分別為D,E.
(1)如圖①,連結CD,AE,求證:CD=AE;
(2)如圖②,若AB=1,BC=2,求DE的長;
(3)如圖③,將圖②中的正三角形BEC繞B點作適當的旋轉,連結AE,若有DE2+BE2=AE2 , 試求∠DEB的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com