【題目】3月5日是學雷鋒日,也是中國青年志愿者服務日.今年3月5日,某中學組織全體學生參加了“青年志愿者”活動,活動分為“打掃街道(記為A)”“去敬老院服務(記為B)”“到社區文藝演出(記為C)”三項.
(1)八年級計劃在3月5日這天隨機完成“青年志愿者”活動中的一項,求八年級完成的恰好是“去敬老院服務”的概率;
(2)九年級計劃在3月5日這天隨機完成“青年志愿者”活動中的兩項,請用列表或畫樹狀圖法求九年級完成的恰好是“打掃街道”和“去敬老院服務”的概率.
科目:初中數學 來源: 題型:
【題目】如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.
(1)求證:BN平分∠ABE;
(2)若BD=1,連結DN,當四邊形DNBC為平行四邊形時,求線段BC的長;
(3)如圖②,若點F為AB的中點,連結FN、FM,求證:△MFN∽△BDC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一塊形狀如圖的五邊形余料,
,
,
,
,
.要在這塊余料中截取一塊矩形材料,其中一邊在
上,并使所截矩形的面積盡可能大.
(1)若所截矩形材料的一條邊是或
,求矩形材料的面積;
(2)能否截出比(1)中面積更大的矩形材料?如果能,求出這些矩形材料面積的最大值,如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,笑笑和爸爸想要測量直立在地面上的建筑物OP與廣告牌AB的高度.首先,笑笑站在離廣告牌B處4米的D處看到廣告牌AB的頂端A、建筑物OP的頂端O一條直線上;此時,在陽光下,爸爸站在N處,他的影長NE=2.1米,同一時刻,測得建筑物OP的影長為PG=28米,已知建筑物OP與廣告牌AB之間的水平距離為11米,笑笑的眼睛到地面的距離CD=1.5米,爸爸的身高MN=1.8米.
(1)請你畫出表示建筑物OP在陽光下的影子PG;
(2)求:①建筑物OP的高度;
②廣告牌AB的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在習題課上,老師讓同學們以課本一道習題“如圖1,A,B,C,D四家工廠分別坐落在正方形城鎮的四個角上.倉庫E和Q分別位于AD和DC上,且ED=QC.證明兩條直路BE=AQ且BE⊥AQ.”為背景開展數學探究.
(1)獨立思考:將上題條件中的ED=QC去掉,將結論中的BE⊥AQ變為條件,其他條件不變,那么BE=AQ還成立嗎?請寫出答案并說明理由;
(2)合作交流:“祖沖之”小組的同學受此問題的啟發提出:如圖2,在正方形ABCD內有一點P,過點P作EF⊥GH,點E、F分別在正方形的對邊AD、BC上,點G、H分別在正方形的對邊AB、CD上,那么EF與GH相等嗎?并說明理由.
(3)拓展應用:“楊輝”小組的同學受“祖沖之”小組的啟發,想到了利用圖2的結論解決以下問題:
如圖3,將邊長為10cm的正方形紙片ABCD折疊,使點A落在DC的中點E處,折痕為MN,點N在BC邊上,點M在AD邊上.請你畫出折痕,則折痕MN的長是 ;線段DM的長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小麗和哥哥小明分別從家和圖書館同時出發,沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發的時間x(min)之間的函數圖象如圖所示:
(1)求兩人相遇時小明離家的距離;
(2)求小麗離距離圖書館500m時所用的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形中,
,
是邊
上一點,且
.已知
經過點
,與邊
所在直線相切于點
(
為銳角),與邊
所在直線交于另一點
,且
,當邊
或
所在的直線與
相切時,
的長是( )
A.1或3B.4或C.
或
D.4或12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關于點B1成中心對稱,再作△B2A3B3與△B2A2B1關于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數)的頂點A2n+1的坐標是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com