【題目】如圖,AB是⊙O的直徑,點P在BA的延長線上,PA=AO,PD與⊙O相切于點D,BC⊥AB交PD的延長線于點C,若⊙O的半徑為1,則BC的長是( 。
A.1.5B.2C.D.
科目:初中數學 來源: 題型:
【題目】小李經營一個社區快遞網點,負責周邊快件收發,由于疫情原因,到2020年2月12 日網點才可以復工,而該網點的另外兩名員工因為辦理復工手續,將分別在2月15日和2月26日返崗,工作據大數據顯示,預計從復工之日開始,每日到達該網點的快件數量(件)與第
天(2月12日為第
天)滿足:
.已知一位快遞員日均派送快件量為
件,通過加班最高可派送
件.
前三天小李派送的快件總量為_ 件;
以最高派送量派送快件還有剩余時,則當天剩余快件留到第二天優先派送,
①到第十天結束時,滯留的快件共有 件; 到第十四天結束時,滯留的快件共有__件;
②2月18日后快遞激增爆倉,小李和員工每天加班派送,根據現有快遞數量的變化趨勢,從2月19日開始計算,小李至少要加班幾天才可以不用加班派送.(即小李不加班派送的情況下,快遞點沒有滯留件)
到了3月5日,全國疫情穩定,預計每日到達網點的快件數量將按新趨勢變化,“女神節”期間(3月6日-9日)日均快件量為
件,3月10日起日均快件量穩定在
件.此時小李接到快遞總公司新規定:從3月10日開始,到達的快件必須當天派送完畢,否則將扣除滯留快件滯留費
元/件天(之前滯留的快件從3月10日0時開始收取滯留費)為此,小李想到從市場招聘____名臨時工幫助派送快遞,若臨時工基本工資
元/天,外加派送費
元/件臨時工一天最多可派送快件
件,為了將支出降到最低,小李應該聘請臨時工幾天,派送快件共多少件?此時最低支出多少元錢?直接寫出你的答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數,a≠0)與x軸交于A,B兩點,頂點P(m,n).給出下列結論:①2a+c<0;②若(﹣,y1),(﹣
,y2),(
,y3)在拋物線上,則y1>y2>y3;③關于x的方程ax2+bx+k=0有實數解,則k>c﹣n;④當n=﹣
時,△ABP為等腰直角三角形.其中正確結論是______(填寫序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A的坐標是A(x,y),從1、2、3這三個數中任取一個數作為x的值,再從余下的兩個數中任取一個數作為y的值.則點A落在直線y=﹣x+5與直線y=x及y軸所圍成的封閉區域內(含邊界)的概率是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對任意一個兩位數m,如果m等于兩個正整數的平方和,那么稱這個兩位數m為“平方和數”,若m=a2+b2(a、b為正整數),記A(m)=ab.例如:29=22+52,29就是一個“平方和數”,則A(29)=2×5=10.
(1)判斷25是否是“平方和數”,若是,請計算A(25)的值;若不是,請說明理由;
(2)若k是一個“平方和數”,且A(k)=,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1.已知⊙M與x軸交于A、B兩點,與y軸交于C、D兩點,A、B兩點的橫坐標分別為﹣1和7,弦AB的弦心距MN為3,
(1)求⊙M的半徑;
(2)如圖2,P在弦CD上,且CP=2,Q是弧BC上一動點,PQ交直徑CF于點E,當∠CPQ=∠CQD時,
①判斷線段PQ與直徑CF的位置關系,并說明理由;
②求CQ的長;
(3)如圖3.若P點是弦CD上一動點,Q是弧BC上一動點,PQ交直徑CF于點E,當∠CPQ與∠CQD互余時,求△PEM面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校同安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了如圖兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有 人,扇形統計圖中“了解”部分所對應扇形的圓心角為 度;并補全條形統計圖.
(2)若該中學共有學生人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為 人;
(3)若從對校園安全知識達到“了解”程度的個女生
和
個男生
中分別隨機抽取
人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com