【題目】如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點O,則線段AO的最大值為_____.
【答案】
【解析】
以AO為邊作等腰直角△AOF,且∠AOF=90°,由題意可證△AOB≌△FOC,可得AB=CF=4,根據三角形的三邊關系可求AF的最大值,即可得AO的最大值.
解:如圖:以AO為邊作等腰直角△AOF,且∠AOF=90°
∵四邊形BCDE是正方形
∴BO=CO,∠BOC=90°
∵△AOF是等腰直角三角形
∴AO=FO,AF=AO
∵∠BOC=∠AOF=90°
∴∠AOB=∠COF,且BO=CO,AO=FO
∴△AOB≌△FOC(SAS)
∴AB=CF=4
若點A,點C,點F三點不共線時,AF<AC+CF;
若點A,點C,點F三點共線時,AF=AC+CF
∴AF≤AC+CF=3+4=7
∴AF的最大值為7
∵AF=AO
∴AO的最大值為.
故答案為:
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發,那么△PBQ的面積S隨出發時間t(s)如何變化?寫出函數關系式及t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在中,
為
的中點.
(1)如果點在線段
上以
的速度由點
向點
運動,同時,點
在線段
上由點
向點
運動.
①若點的運動速度與點
的運動速度相等,
后,
與
是否全等?請說明理由
②若點的運動速度與點
的運動速度不相等,則點
的運動速度為多少時,能夠使
與
全等?
(2)若點以第
題②中的運動速度從點
出發,點
以原來的運動速度從點
同時出發,都逆時針沿
三邊運動,經過多少時間,點
與點
第一次在
的哪條邊上相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,AB是⊙O的直徑,AC是弦,直線EF和⊙O相切于點C,AD⊥EF,垂足為D。
(1)求證:∠DAC=∠BAC;
(2)若把直線EF向上平行移動,如圖②,EF交⊙O于G、C兩點,若題中的其它條件不變,猜想:此時與∠DAC相等的角是哪一個?并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中, 對角線AC、BD相交于點O. E、F是對角線AC上的兩個不同點,當E、F兩點滿足下列條件時,四邊形DEBF不一定是平行四邊形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點A、C,與AB交于點D.
(1)求拋物線的函數解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數量關系?并證明你的結論。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com