【題目】如圖,己知等腰,以
為直徑的圓交
于點
,過點
的⊙
的切線交
于點
,若
,則⊙
的半徑是( )
A. B. 5 C. 6 D.
【答案】B
【解析】
首先連接OD、BD,判斷出OD∥BC,再根據DE是⊙O的切線,推得DE⊥OD,所以DE⊥BC;然后根據DE⊥BC,CD=4,CE=8,求出DE的長度是多少;最后判斷出BD、AC的關系,根據勾股定理,求出BC的值是多少,再根據AB=BC,求出AB的值是多少,即可求出⊙O的半徑是多少.
如圖,連接OD、BD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴BD⊥AC,
又∵AB=BC,
∴AD=CD,
又∵AO=OB,
∴OD是△ABC的中位線,
∴OD∥BC,
∵DE是⊙O的切線,
∴DE⊥OD,
∴DE⊥BC,
∵CD=4,CE=8,
∴DE==4,
∵S△BCD=BDCD÷2=BCDE÷2,
∴4BD=4BC,即
BD=BC,
∴BD=BC,
∵BD2+CD2=BC2,
∴(BC)2+(4
)=BC2,
解得BC=10,
∵AB=BC,
∴AB=10,
∴⊙O的半徑是;10÷2=5.
故選:B.
科目:初中數學 來源: 題型:
【題目】圖為某班35名學生投籃成績的條型統計圖,其中上面部分數據缺損導致數據不完全.已知此班學生投籃成績的中位數是5,則根據統計圖的數據,無法確定下列哪一選項中的數值( )
A. 4球(不含4球)以下的人數B. 5球(不含5球)以下的人數
C. 6球(不含6球)以下的人數D. 7球(不含7球)以下的人數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校對九年級學生課外閱讀情況進行了隨機抽樣檢查,將調查的情況分為四個等級,并制作了如下統計圖(部分信息未給出):
請根據統計圖中的信息解答下列問題:
(1)這次隨機抽樣調查的樣本容量是 ;扇形統計圖中= ,
= ;
(2)補全條形統計圖;
(3)已知該校九年級學生中課外閱讀為等級的共有
人,請估計九年級中其他等級各有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小馬虎做一道數學題,“已知兩個多項式,
,試求
.”其中多項式
的二次項系數印刷不清楚.
(1)小馬虎看答案以后知道,請你替小馬虎求出系數“
”;
(2)在(1)的基礎上,小馬虎已經將多項式正確求出,老師又給出了一個多項式
,要求小馬虎求出
的結果.小馬虎在求解時,誤把“
”看成“
”,結果求出的答案為
.請你替小馬虎求出“
”的正確答案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發,設慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數關系.若第二列快車也從甲地出發駛往乙地,速度與第一列快車相同.在第一列快車與慢車相遇0.5小時后,第二列快車與慢車相遇.則第二列快車比第一列快車晚出發__小時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A(-2,0),B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線(k<0)經過點D,連接BD,若四邊形OADB的面積為6,則k的值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數的圖象經過點(﹣2,12)和(3,﹣3).
(1)求這個一次函數的表達式.
(2)畫出這條直線的圖象.
(3)設這條直線與兩坐標軸的交點分別為A、B,求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的頂點為,且經過點
,與
軸分別交于
、
兩點.
(1)求直線和拋物線的函數表達式;
(2)如圖,點是拋物線上的一個動點,且在直線
的下方,過點
作
軸的平行線與直線
交于點
,求
的最大值;
(3)如圖,過點的直線交
軸于點
,且
軸,點
是拋物線上
、
之間的一個動點,直線
、
與
分別交于
、
兩點.當點
運動時,
是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com