精英家教網 > 初中數學 > 題目詳情

【題目】如圖.在直角坐標系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標為______

【答案】(﹣,

【解析】

首先過DDFAFF,根據折疊可以證明△CDE≌△AOE,然后利用全等三角形的性質得到OE=DE,OA=CD=1,設OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的長度,而利用已知條件可以證明△AEO∽△ADF,而AD=AB=3,接著利用相似三角形的性質即可求出DF、AF的長度,也就求出了D的坐標.

解:如圖,過DDFAOF,

∵點B的坐標為(1,3),

BC=AO=1,AB=OC=3,

根據折疊可知:CD=BC=OA=1,CDE=B=AOE=90°,AD=AB=3,

在△CDE和△AOE中,

,

∴△CDE≌△AOE,

OE=DE,OA=CD=1,AE=CE,

OE=x,那么CE=3﹣x,DE=x,

∴在RtDCE中,CE2=DE2+CD2

(3﹣x)2=x2+12

x=,

OE=,AE=CE=OC﹣OE=3﹣=,

又∵DFAF,

DFEO,

∴△AEO∽△ADF,

AE:AD=EO:DF=AO:AF,

:3=:DF=1:AF,

DF=,AF=,

OF=﹣1=

D的坐標為:(﹣,).

故答案為:(﹣,).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】郴州市正在創建全國文明城市,某校擬舉辦創文知識搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎品每件各多少元?

(2)現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(不與點A、B重合),連接DE,點A關于直線DE的對稱點為F,連接EF并延長交BC于點G,連接DG,過點EEHDEDG的延長線于點H,連接BH.

(1)求證:GF=GC;

(2)用等式表示線段BHAE的數量關系,并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】重慶是一座美麗的山坡,某中學依山而建,校門A處,有一斜坡AB,長度為13米,在坡頂B處看教學樓CF的樓頂C的仰角∠CBF=53°,離B點4米遠的E處有一花臺,在E處仰望C的仰角∠CEF=63.4°,CF的延長線交校門處的水平面于D點,FD=5米.

(1)求斜坡AB的坡度i;(2)求DC的長.(參考數據:tan53°≈,tan63.4°≈2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,點是直線上一動點(點不與點、重合),,,,,連接

1)如圖1,當點在線段上時,求證:

2)如圖2,當點在線段的延長線上時,其他條件不變,請寫出、、三條線段之間的數量關系,并說明理由.

3)當點在線段的反向延長線上時,且點、分別在直線的兩側,其他條件不變,若,,直接寫出的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A、B兩名同學在同一個學校上學,B同學上學的路上經過A同學家。A同學步行,B同學騎自行車,某天,A,B兩名同學同時從家出發到學校,如圖,A表示A同學離B同學家的路程A(m)與行走時間(min)之間的函數關系圖象,B表示B同學離家的路程B(m)與行走時間(min)之間的函數關系圖象.

(1)A,B兩名同學的家相距________m.

(2)B同學走了一段路后,自行車發生故障,進行修理,修理自行車所用的時間是 _____min.

(3)B同學出發后______min與A同學相遇.

(4)求出A同學離B同學家的路程A與時間的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A的坐標為(6,0),點B的坐標為(0,8),點C的坐標為(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒兩個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發,當其中一點到達終點后,另一點也隨之停止運動,設動點運動的時間t秒(t>0),△OMN的面積為S.

(1)填空:AB的長是   ,BC的長是  ;

(2)當t=3時,求S的值;

(3)當3<t<6時,設點N的縱坐標為y,求y與t的函數關系式;

(4)若S=,請直接寫出此時t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖在ABC中,AB=AC=9,BAC=120°,AD是ABC的中線,AE是BAD的角平分線,DFAB交AE的延長線于點F,求DF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算張老師在黑板上寫了三個算式,希望同學們認真觀察,發現規律

請你結合這些算式,解答下列問題:

(1)請你再寫出另外兩個符合上述規律的算式;

(2)驗證規律:設兩個連續奇數為2n+1,2n–1(其中n為正整數),則它們的平方差是8的倍數;

(3)拓展延伸:兩個連續偶數的平方差是8的倍數,這個結論正確嗎?請說明理由

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视