【題目】如圖.在直角坐標系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標為______.
【答案】(﹣,
)
【解析】
首先過D作DF⊥AF于F,根據折疊可以證明△CDE≌△AOE,然后利用全等三角形的性質得到OE=DE,OA=CD=1,設OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的長度,而利用已知條件可以證明△AEO∽△ADF,而AD=AB=3,接著利用相似三角形的性質即可求出DF、AF的長度,也就求出了D的坐標.
解:如圖,過D作DF⊥AO于F,
∵點B的坐標為(1,3),
∴BC=AO=1,AB=OC=3,
根據折疊可知:CD=BC=OA=1,∠CDE=∠B=∠AOE=90°,AD=AB=3,
在△CDE和△AOE中,
,
∴△CDE≌△AOE,
∴OE=DE,OA=CD=1,AE=CE,
設OE=x,那么CE=3﹣x,DE=x,
∴在Rt△DCE中,CE2=DE2+CD2,
∴(3﹣x)2=x2+12,
∴x=,
∴OE=,AE=CE=OC﹣OE=3﹣
=
,
又∵DF⊥AF,
∴DF∥EO,
∴△AEO∽△ADF,
∴AE:AD=EO:DF=AO:AF,
即:3=
:DF=1:AF,
∴DF=,AF=
,
∴OF=﹣1=
,
∴D的坐標為:(﹣,
).
故答案為:(﹣,
).
科目:初中數學 來源: 題型:
【題目】郴州市正在創建“全國文明城市”,某校擬舉辦“創文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.
(1)A、B兩種獎品每件各多少元?
(2)現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(不與點A、B重合),連接DE,點A關于直線DE的對稱點為F,連接EF并延長交BC于點G,連接DG,過點E作EH⊥DE交DG的延長線于點H,連接BH.
(1)求證:GF=GC;
(2)用等式表示線段BH與AE的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】重慶是一座美麗的山坡,某中學依山而建,校門A處,有一斜坡AB,長度為13米,在坡頂B處看教學樓CF的樓頂C的仰角∠CBF=53°,離B點4米遠的E處有一花臺,在E處仰望C的仰角∠CEF=63.4°,CF的延長線交校門處的水平面于D點,FD=5米.
(1)求斜坡AB的坡度i;(2)求DC的長.(參考數據:tan53°≈,tan63.4°≈2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,點是直線
上一動點(點
不與點
、
重合),
,
,
,
,連接
.
(1)如圖1,當點在線段
上時,求證:
.
(2)如圖2,當點在線段
的延長線上時,其他條件不變,請寫出
、
、
三條線段之間的數量關系,并說明理由.
(3)當點在線段
的反向延長線上時,且點
、
分別在直線
的兩側,其他條件不變,若
,
,直接寫出
的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B兩名同學在同一個學校上學,B同學上學的路上經過A同學家。A同學步行,B同學騎自行車,某天,A,B兩名同學同時從家出發到學校,如圖,A表示A同學離B同學家的路程
A(m)與行走時間
(min)之間的函數關系圖象,
B表示B同學離家的路程
B(m)與行走時間
(min)之間的函數關系圖象.
(1)A,B兩名同學的家相距________m.
(2)B同學走了一段路后,自行車發生故障,進行修理,修理自行車所用的時間是 _____min.
(3)B同學出發后______min與A同學相遇.
(4)求出A同學離B同學家的路程A與時間
的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A的坐標為(6,0),點B的坐標為(0,8),點C的坐標為(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒兩個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發,當其中一點到達終點后,另一點也隨之停止運動,設動點運動的時間t秒(t>0),△OMN的面積為S.
(1)填空:AB的長是 ,BC的長是 ;
(2)當t=3時,求S的值;
(3)當3<t<6時,設點N的縱坐標為y,求y與t的函數關系式;
(4)若S=,請直接寫出此時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中線,AE是∠BAD的角平分線,DF∥AB交AE的延長線于點F,求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算張老師在黑板上寫了三個算式,希望同學們認真觀察,發現規律.
請你結合這些算式,解答下列問題:
(1)請你再寫出另外兩個符合上述規律的算式;
(2)驗證規律:設兩個連續奇數為2n+1,2n–1(其中n為正整數),則它們的平方差是8的倍數;
(3)拓展延伸:“兩個連續偶數的平方差是8的倍數”,這個結論正確嗎?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com