精英家教網 > 初中數學 > 題目詳情

【題目】已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點,點A在點B的左側.
(1)求A,B兩點的坐標和此拋物線的對稱軸;
(2)設此拋物線的頂點為C,點D與點C關于x軸對稱,求四邊形ACBD的面積.

【答案】解:(1)令y=0,則﹣x2+2x+3=0,
解得:x1=﹣1,x2=3.
則A的坐標是(﹣1,0),B的坐標是(3,0).
y=﹣x2+2x+3=﹣(x﹣1)2+4,
則對稱軸是x=1,頂點C的坐標是(1,4);
(2)D的坐標是(1,﹣4).
AB=3﹣(﹣1)=4,CD=4﹣(﹣4)=8,
則四邊形ACBD的面積是:ABCD=×4×8=16.
【解析】(1)令y=0解方程即可求得A和B的橫坐標,然后利用配方法即可求得對稱軸和頂點坐標;
(2)首先求得D的坐標,然后利用面積公式即可求解.
【考點精析】本題主要考查了拋物線與坐標軸的交點的相關知識點,需要掌握一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】觀察下列算式:12-02=1+0=1,,22-12=2+1=3,32-22=3+2=5,42-32=4+3=7 ,52-42=5+4=9,…….

若字母 表示自然數,請把你觀察到的規律用含有 的式子表示出來________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有這樣一個問題:探究函數y=+x的圖象與性質.
小東根據學習函數的經驗,對函數y=+x的圖象與性質進行了探究.
下面是小東的探究過程,請補充完整:
(1)函數y=+x的自變量x的取值范圍是;
(2)下表是y與x的幾組對應值.

求m的值;
(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據描出的點,畫出該函數的圖象;
(4)進一步探究發現,該函數圖象在第一象限內的最低點的坐標是(2,3),結合函數的圖象,寫出該函數的其它性質(一條即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)、菱形的邊長1,面積為,則的值為( )

A、 B、 C、 D、

(2)、如圖,ABCD是正方形,ECF上一點,若DBEF是菱形,則EBC=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料:
在學習《圓》這一章時,老師給同學們布置了一道尺規作圖題:
尺規作圖:過圓外一點作圓的切線.
已知:P為⊙O外一點.
求作:經過點P的⊙O的切線.
小敏的作法如下:
如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點C;
(2)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點;
(3)作直線PA,PB.所以直線PA,PB就是所求作的切線.
老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據是 ;由此可證明直線PA,PB都是⊙O的切線,其依據是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面積.

(2)在圖形中作出△ABC關于x軸的對稱圖形△A1B1C1.寫出點A1,B1,C1的坐標.

(3)在圖形中作出△ABC關于y軸的對稱圖形△A2B2C2.寫出點A2,B2,C2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,二次函數y=﹣+bx+c的圖象經過點A(1,0),且當x=0和x=5時所對應的函數值相等.一次函數y=﹣x+3與二次函數y=﹣+bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數y=﹣+bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩塊等腰直角三角形紙片AOBCOD按圖所示放置,直角頂點重合在點O處,AB25.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉α(0°α90°)角度,如圖所示.

(1)在圖中,求證:ACBD,且ACBD;

(2)BDCD在同一直線上(如圖③)時,若AC7,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

(1)把△ABC向上平移2個單位長度,再向右平移1個單位長度后得到△A1B1C1,請畫出△A1B1C1,并寫出點A1,B1,C1的坐標;

(2)求△A1B1C1的面積;

(3)點P在坐標軸上,且△A1B1P的面積是2,求點P的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视