【題目】如圖,拋物線y=x2+bx+c與x軸交于A,C兩點,與y軸交于B點,拋物線的頂點為點D,已知點A的坐標為(﹣1,0),點B的坐標為(0,﹣3).
(1)求拋物線的解析式及頂點D的坐標.
(2)求△ACD的面積.
科目:初中數學 來源: 題型:
【題目】如右圖,正方形ABCD的邊長為2,點E是BC邊上一點,以AB為直徑在正方形內作半圓
O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:一元二次方程,當
時,設兩根為
,
,則兩根與系數的關系為:
;
.
應用:
(1)方程的兩實數根分別為
,
,則
______,
_____;
(2)若關于的方程
的有兩個實數根
,
,求
的取值范圍;
(3)在(2)的條件下,若滿足,求實數
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=,對角線AC,BD交于O點,將直線AC繞點O順時針旋轉,分別交BC,AD于點E,F.
(1)求證:當旋轉角為90°時,四邊形ABEF是平行四邊形;
(2)在旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如能,說明理由并求出此時AC繞點O順時針旋轉的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A(﹣,0),B(
,0),C(0,
).D,E分別是線段AC和CB上的點,CD=CE.將△CDE繞點C逆時針旋轉一個角度α.
(1)若0°<α<90°,在旋轉過程中當點A,D,E在同一直線上時,連接AD,BE,如圖2.求證:AD=BE,且AD⊥BE
(2)若0°<α<360°,D,E恰好是線段AC和CB上的中點,在旋轉過程中,當DE∥AC時,求α的值及點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖, 是邊長為3cm的等邊三角形,動點P、Q同時從A、B兩點出發,分別沿AB、BC方向勻速移動,它們的速度都是
,當點P到達點B時,P、Q兩點停止運動,設點P的運動時間
,解答下列各問題:
經過
秒時,求
的面積;
當t為何值時,
是直角三角形?
是否存在某一時刻t,使四邊形APQC的面積是
面積的三分之二?如果存在,求出t的值;不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于點F.
(1)求證:△ABE∽△DEF;
(2)求CF的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com