【題目】在菱形ABCD中,E,F分別是AD,BD的中點,若EF=2,則菱形ABCD的周長是 .
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD為等腰梯形,AD∥BC,AB=CD,AD= ,E為CD中點,連接AE,且AE=2
,∠DAE=30°,作AE⊥AF交BC于F,則BF=( )
A.1
B.3﹣
C. ﹣1
D.4﹣2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xoy中,一次函數y= x+3的圖象與x軸和y軸交于A、B兩點,將△AOB繞點O順時針旋轉90°后得到△A′OB′.
(1)求直線A′B′的解析式;
(2)若直線A′B′與直線AB相交于點C,求S△ABC:S△ABO的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,數軸上,O點與C點對應的數分別是0、60(單位:單位長度),將一根質地均勻的直尺AB放在數軸上(A在B的左邊),若將直尺在數軸上水平移動,當A點移動到B點的位置時,B點與C點重合,當B點移動到A點的位置時,A點與O點重合.
(1)直尺的長為多少個單位長度(直接寫答案)
(2)如圖2,直尺AB在數軸上移動,有BC=4OA,求此時A點對應的數;
(3)如圖3,以OC為邊搭一個橫截面為長方形的不透明的篷子,將直尺放入篷內的數軸上的某處(看不到直尺的任何部分,A在B的左邊),將直尺AB沿數軸以5個單位/秒的速度分別向左、向右移動,直到完全看到直尺,所經歷的時間為t1、t2, 若t1﹣t2=2(秒),求直尺放入蓬內,A點對應的數為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,射線AM∥BN,點E,F,D在射線AM上,點C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求證:AB∥CD.
(2)如果平行移動CD,那么∠AFB與∠ADB的比值是否發生變化?若變化,找出變化規律;若不變,求出這兩個角的比值.
(3)如果∠A=100°,那么在平行移動CD的過程中,是否存在某一時刻,使∠AEB=∠BDC?若存在,求出此時∠AEB的度數;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下結論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當點H與點A重合時,EF=2 .
以上結論中,你認為正確的有 . (填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD……X”,請你作出猜想:當∠AMN= °時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校體育組對本校九年級全體同學體育測試情況進行調查,他們隨即抽查部分同學體育測試成績(由高到低分四個等級),根據調查的數據繪制成如下的條形統計圖和扇形統計圖:
請根據以上不完整的統計圖提供的信息,解答下列問題:
(1) 該課題研究小組共抽查了_________名同學的體育測試成績,扇形統計圖中B級所占的百分比b=__________
(2) 補全條形統計圖.
(3) 若該校九年級共有200名同學,請估計該校九年級同學體育測試達標(測試成績C級以上,含C級)均有___________名.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com