精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的弦,OH⊥AB于點H,點P是優弧上一點,若AB=2 ,OH=1,則∠APB的度數是

【答案】60°
【解析】解:連接OA,OB,
∵OH⊥AB,AB=2 ,
∴AH= AB=
∵OH=1,
∴tan∠AOH =
∴∠AOH=60°,
∴∠AOB=2∠AOH=120°,
∴∠APB= ∠AOB= ×120°=60°.
所以答案是:60°.

【考點精析】認真審題,首先需要了解垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧),還要掌握圓周角定理(頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y= x+1與拋物線y=ax2+bx﹣3交于A,B兩點,點A在x軸上,點B的縱坐標為3.點P是直線AB下方的拋物線上一動點(不與A,B重合),過點P作x軸的垂線交直線AB與點C,作PD⊥AB于點D

(1)①求拋物線的解析式;②求sin∠ACP的值
(2)設點P的橫坐標為m
①用含m的代數式表示線段PD的長,并求出線段PD長的最大值;
②連接PB,線段PC把△PDB分成兩個三角形,求出當這兩個三角形面積之比為9:10時的m值;
③是否存在適合的m值,使△PCD與△PBD相似?若存在,直接寫出m值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:|﹣1|+ +(3.14﹣π)0﹣4cos60°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知邊長為4的正方形ABCD,P是BC邊上一動點(與B、C不重合),連結AP,作PE⊥AP交∠BCD的外角平分線于E.設BP=x,△PCE面積為y,則y與x的函數關系式是( 。

A.y=2x+1
B.y= x﹣2x2
C.y=2x﹣ x2
D.y=2x

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,過點D作DE⊥AD交AB于E,以AE為直徑作⊙O.

(1)求證:點D在⊙O上;
(2)求證:BC是⊙O的切線;
(3)若AC=6,BC=8,求△BDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,△ABC的邊AC在x軸上,邊BC⊥x軸,雙曲線y= 與邊BC交于點D(4,m),與邊AB交于點E(2,n).

(1)求n關于m的函數關系式;
(2)若BD=2,tan∠BAC= ,求k的值和點B的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市新城區環形路的拓寬改造工程項目,經投標決定由甲、乙兩個工程隊共同完成這一工程項目.已知乙隊單獨完成這項工程所需天數是甲隊單獨完成這項工程所需天數的2倍;該工程如果由甲隊先做6天,剩下的工程再由甲、乙兩隊合作16天可以完成.求甲、乙兩隊單獨完成這項工程各需要多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為響應區“美麗廣西 清潔鄉村”的號召,某校開展“美麗廣西 清潔校園”的活動,該校經過精心設計,計算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項綠化工作,將每天的工作量提高為原來的1.2倍.結果一共用20天完成了該項綠化工作.
(1)該項綠化工作原計劃每天完成多少m2?,
(2)在綠化工作中有一塊面積為170m2的矩形場地,矩形的長比寬的2倍少3m,請問這塊矩形場地的長和寬各是多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解某品牌轎車的耗油情況,將油箱加滿后進行了耗油試驗,得到如表數據:

轎車行駛的路程s(km)

0

100

200

300

400

油箱剩余油量Q(L)

50

42

34

26

18

(1)該轎車油箱的容量為______L,行駛150km時,油箱剩余油量為______L

(2)根據上表的數據,寫出油箱剩余油量Q(L)與轎車行駛的路程s(km)之間的表達式;

(3)某人將油箱加滿后,駕駛該轎車從A地前往B地,到達B地時郵箱剩余油量為26L,求A,B兩地之間的距離.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视