【題目】如圖,∠AOB=90°,點P為∠AOB內部一點,作射線OP,點M在射線OB上,且OM=,點M′與點M關于射線OP對稱,且直線MM′與射線OA交于點N.當△ONM'為等腰三角形時,ON的長為______.
【答案】3或1
【解析】
如圖分兩種情況,Ⅰ.M'在∠AOB內部,Ⅱ.M'在∠AOB外部,由已知和等腰三角形性質、利用三角函數列方程,解直角三角形即可解答.
解:M'位置有兩種情況,
Ⅰ.M'在∠AOB內部,如圖1,
∵點M′與點M關于射線OP對稱,△ONM'為等腰三角形,
∴M′N=OM′=OM=,MH=M′H,
∵∵∠AOB=90°,cos∠OMN=
∴,
解得MH=,
∴MN=2,
在Rt△MON中,ON==
=3
Ⅱ.M'在∠AOB外部,如圖2,過N點作QN⊥OM′,
∵△ONM'為等腰三角形,即M′N=ON,
∴M′Q=M′O,
∵OM=,點M′與點M關于射線OP對稱,
∴M′Q=,OM=OM′,
∴∠OM′M=∠OMM′,cos∠OM′M=,cos∠OMM′=
,
設ON=M′N=x,NH=M′H=y,
,
解得:x=1,y=,
綜上所述:當△ONM'為等腰三角形時,ON的長為3或1.
故答案為3,1.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦AC與BD交于點E,且AC=BD,連接AD,BC.
(1)求證:△ADB≌△BCA;
(2)若OD⊥AC,AB=4,求弦AC的長;
(3)在(2)的條件下,延長AB至點P,使BP=2,連接PC.求證:PC是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中考體育測評前,某校在初三15個班中隨機抽取了4個班的學生進行了摸底測評,將各班的滿分人數進行整理,繪制成如下兩幅統計圖.
(1)D班滿分人數共 人,扇形統計圖中,表示C班滿分人數的扇形圓心角的度數為 .
(2)這些滿分同學中有4名同學(3女1男)的跳繩動作十分標準,學校準備從這4名同學中任選2名同學作示范,請利用畫樹狀圖或列表法求選中1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C為半圓內一點,O為圓心,直徑AB長為2cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉至△B′OC′,點C′在OA上,則邊BC掃過區域(圖中陰影部分)的面積為_____cm2.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,M為等腰△ABD的底AB的中點,過D作DC∥AB,連結BC:AB=8cm.DM=4cm,DC=1cm,動點P自A點出發,在AB上勻速運動,動點Q自點B出發,在折線BC﹣CD上勻速運動,速度均為1cm/s,當其中一個動點到達終點時,它們同時停止運動,設點P運動(s)時,△MPQ的面積為S(不能構成△MPQ的動點除外).
(1)點Q在BC上運動時,求t的取值范圍;
(2)當點Q在CD上運動時,求t為何值時,△MPQ是等腰三角形;
(3)求S與t之間的函數關系式;當t為何值時,S有最大值?最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.
(1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?
(2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節省費用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春秋旅行社為吸引市民組團去天水灣風景區旅游,推出了如下收費標準:
某單位組織員工去天水灣風景區旅游,共支付給春秋旅行社旅游費用27000元,請問該單位這次共有多少員工去天水灣風景區旅游?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在半⊙中,
是直徑,點
是⊙
上一點,點
是
的中點,
于點
,過點
的切線交
的延長線于點
,連接
,分別交
于點
,連接
,關于下列結論:①
;②
;③點
是
的外心;④
,其中結論正確的是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線(
,
是常數,且
),經過點
,
,與
軸交于點
.
(Ⅰ)求拋物線的解析式;
(Ⅱ)若點是射線
上一點,過點
作
軸的垂線,垂足為點
,交拋物線于點
,設
點橫坐標為
,線段
的長為
,求出
與
之間的函數關系式,并寫出相應的自變量
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,當點在線段
上時,設
,已知
,
是以
為未知數的一元二次方程
(
為常數)的兩個實數根,點
在拋物線上,連接
,
,
,且
平分
,求出
值及點
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com