【題目】如圖,拋物線y=ax2+bx(a≠0) 交x軸正半軸于點A,直線y=2x 經過拋物線的頂點M.已知該拋物線的對稱軸為直線x=2,交x軸于點B.
(1)求a,b的值;
(2)P是第一象限內拋物線上的一點,且在對稱軸的右側,連接OP,BP.設點P的橫坐標為m ,△OBP的面積為S,.求K關于m 的函數表達式及K的范圍.
【答案】(1)a=-1;b=4;(2)K=-m+4,0<K<2
【解析】
分析: (1)將x=2代入直線y=2x得出對應的函數值,從而得出M點的坐標,將M點的坐標代入拋物線 y = a x 2 + b x ,再根據拋物線的對稱軸為直線 x = 2,得出關于a,b的二元一次方程組,求解得出a,b的值;
(2)如圖,過點P作PH⊥x軸于點H,根據P點的橫坐標及點P在拋物線上從而得出PH的值,根據B點的坐標得出OB的長,從而根據三角形的面積公式得出S=-m2+4m,再根據,得出k=-m+4,由題意得A(4,0),M(2,4),根據P是第一象限內拋物線上的一點,且在對稱軸的右側,從而得出2<m<4,根據一次函數的性質知K隨著m的增大而減小,從而得出答案0<K<2.
詳解:
(1)解 ;將x=2代入y=2x得y=4
∴M(2,4)
由題意得 ,
∴ .
(2)解 :如圖,過點P作PH⊥x軸于點H
∵點P的橫坐標為m,拋物線的函數表達式為y=-x2+4x
∴PH=-m2+4m
∵B(2,0),
∴OB=2
∴S= OB·PH=
×2×(-m2+4m)=-m2+4m
∴K==-m+4
由題意得A(4,0)
∵M(2,4)
∴2<m<4
∵K隨著m的增大而減小,所以0<K<2
科目:初中數學 來源: 題型:
【題目】如圖,已知數軸上A、B兩點所表示的數分別為-2和8.
(1)求線段AB的長;
(2)若P為射線BA上的一點(點P不與A、B兩點重合,M為PA的中點,N為PB的中點,當點P在射線BA上運動時;MN的長度是否發生改變?若不變,請你畫出圖形,并求出線段MN的長;若改變,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)一個不透明的盒子中裝有 2 枚黑色的棋子和 1 枚白色的棋子,每枚棋子除了顏色外其余均相同.從盒中隨機摸出一枚棋子,記下顏色后放回并攪勻,再從盒子中隨機摸出一枚棋子,記下顏色,用畫樹狀圖(或列表)的方法,求兩次摸出的棋子顏色不同的概率.
(2)如圖,已知 ,
,
,
交
于點O,連接
,求證:AO平分
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按要求畫圖,并解答問題
(1)如圖,取BC邊的中點D,畫射線AD;
(2)分別過點B、C畫BE⊥AD于點E,CF⊥AD于點F;
(3)BE和CF的位置關系是 ;通過度量猜想BE和CF的數量關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知P為銳角∠MAN內部一點,過點P作PB⊥AM于點B,PC⊥AN于點C,以PB為直徑作⊙O,交直線CP于點D,連接AP,BD,AP交⊙O于點E.
(1)求證:∠BPD=∠BAC.
(2)連接EB,ED,當tan∠MAN=2,AB=2時,在點P的整個運動過程中.
①若∠BDE=45°,求PD的長;
②若△BED為等腰三角形,求所有滿足條件的BD的長;
(3)連接OC,EC,OC交AP于點F,當tan∠MAN=1,OC//BE時,記△OFP的面積為S1,△CFE的面積為S2,請寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c>0;②a-b+c>1;③abc>0;④4a-2b+c<1;⑤b+2a=0. 其中所有正確的結論是______.(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題提出:某段樓梯共有10個臺階,如果某同學在上臺階時,可以一步1個臺階,也可以一步2個臺階.那么該同學從該段樓梯底部上到頂部共有多少種不同的走法?
問題探究:
為解決上述實際問題,我們先建立如下數學模型:
如圖①,用若干個邊長都為1的正方形(記為1×1矩形)和若干個邊長分別為1和2的矩形(記為1×2矩形),要拼成一個如圖②中邊長分別為1和n的矩形(記為1×矩形),有多少種不同的拼法?(設
表示不同拼法的個數)
為解決上述數學模型問題,我們采取的策略和方法是:一般問題特殊化.
探究一:先從最特殊的情形入手,即要拼成一個1×1矩形,有多少種不同拼法?
顯然,只有1種拼法,如圖③,即=1種.
探究二:要拼成一個1×2矩形,有多少種不同拼法?
可以看出,有2種拼法,如圖④,即=2種.
探究三:要拼成一個1×3矩形,有多少種不同拼法?
拼圖方法可分為兩類:一類是在圖④這2種1×2矩形上方,各拼上一個1×1矩形,即這類拼法共有=2種;另一類是在圖③這1種1×1矩形上方拼上一個1×2矩形,即這類拼法有
=1種.如圖⑤,即
=
+
= 2+1=3(種).
探究四:仿照上述探究過程,要拼成一個1×4矩形,有多少種不同拼法?請畫示意圖說明并求出結果.
探究五:要拼成一個1×5矩形,仿照上述探究過程,得出= 種不同拼法.
(直接寫出結果,不需畫圖).
問題解決:請你根據上述中的數學模型,解答“問題提出”中的實際問題.
(寫出解答過程,不需畫圖).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com