【題目】閱讀下面的材料:
按照一定順序排列著的一列數稱為數列,數列中的每一個數叫做這個數列的項.排在第一位的數稱為第一項,記為,排在第二位的數稱為第二項,記為
,依此類推,排在第n位的數稱為第n項,記為
.所以,數列的一般形式可以寫成:
,
,
,…,
.
一般地,如果一個數列從第二項起,每一項與它前一項的差等于同一個常數,那么這個數列叫做等差數列,這個常數叫做等差數列的公差,公差通常用d表示.如:數列1,3,5,7,…為等差數列,其中,
,公差為
.
根據以上材料,解答下列問題:
(1)等差數列5,10,15,…的公差d為______,第5項是______.
(2)如果一個數列,
,
,…,
…,是等差數列,且公差為d,那么根據定義可得到:
,
,
,…,
,….
所以,
,
,
……,
由此,請你填空完成等差數列的通項公式:(______)d.
(3)是不是等差數列
,
,
…的項?如果是,是第幾項?
科目:初中數學 來源: 題型:
【題目】一個陽光明媚的上午,小明和小蘭相約從魯能巴蜀中學沿相同的路線去龍頭寺公園寫生,小明出發5分鐘后小蘭才出發,此時小明發現忘記帶顏料,立即按原速原路回學校拿顏料,小明拿到顏料后,以比原速提髙20%的速度趕去公園,結果還是比小蘭晚2分鐘到公園(小明拿顏料的時間忽略不計).在整個過程中,小蘭保持勻速運動,小明提速前后也分別保持勻速運動,如圖所示是小明與小蘭之間的距離(米)與小明出發的時間
(分鐘)之間的函數圖象,則學校到公園的距離為_______米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為貫徹落實省教育廳提出的“三生教育”.在母親節來臨之際,某校團委組織了以“珍愛生命,
學會生存,感恩父母”為主題的教育活動,在學校隨機調查了50名同學平均每周在家做家務的時間,統
計并制作了如下的頻數分布表和扇形統計圖:
組別 | 做家務的時間 | 頻數 | 頻率 |
A | 1≤t<2 | 3 | 0.06 |
B | 2≤t<4 | 20 | 0.40 |
C | 4≤t<6 | a | 0.30 |
D | 6≤t<8 | 8 | b |
E | t≥8 | 4 | 0.08 |
根據上述信息回答下列問題:
(1)a= ,b= .
(2)在扇形統計圖中,B組所占圓心角的度數為 .
(3)全校共有2000名學生,估計該校平均每周做家務時間不少于4小時的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我校準備近期做一個關于新冠肺炎的?瘜W生手抄報,想知道同學們對新冠肺炎知識的了解程度,決定隨機抽取部分同學進行次問卷調查,并根據收集到的信息進行了統計,繪制了下面兩.幅尚不完整的統計圖.請你根據統計圖中所提供的信息解答下列問題:
(1)接受問卷調查的同學共有 名;
(2)請補全折線統計圖,并求出扇形統計圖中“基本了解”部分所對應扇形的圓心角的大。
(3)為了讓全校師生都能更好地預防新冠肺炎,學生會準備組織一次宣講活動,由問卷調查中“了解”的幾名同學組成一個宣講團,已知這幾名同學中只有兩個女生,若要在該宣講團中任選兩名同學在全校師生大會上作代表發言,請用列表或畫樹狀圖的方法,求選取的兩名同學都是女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,△ABC是直角三角形,∠ACB=90°,點A,C的坐標分別為A(﹣3,0),C(1,0),tan∠BAC=.
(1)寫出點B的坐標;
(2)在x軸上找一點D,連接BD,使得△ADB與△ABC相似(不包括全等),并求點D的坐標;
(3)在(2)的條件下,如果點P從點A出發,以2cm/秒的速度沿AB向點B運動,同時點Q從點D出發,以1cm/秒的速度沿DA向點A運動.當一個點停止運動時,另一個點也隨之停止運動.設運動時間為t.問是否存在這樣的t使得△APQ與△ADB相似?如存在,請求出t的值;如不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學的一個數學興趣小組在本校學生中開展了主題為“霧霾知多少”的專題調查括動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為“A.非常了解”、“B.比較了解”、“C.基本了解”、“D.不太了解”四個等級,將所得數據進行整理后,繪制成如下兩幅不完整的統計圖表,請你結合圖表中的信息解答下列問題
等級 | A | B | C | D |
頻數 | 40 | 120 | 36 | n |
頻率 | 0.2 | m | 0.18 | 0.02 |
(1)表中m= ,n= ;
(2)扇形統計圖中,A部分所對應的扇形的圓心角是 °,所抽取學生對丁霧霾了解程度的眾數是 ;
(3)若該校共有學生1500人,請根據調查結果估計這些學生中“比較了解”人數約為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數(
)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:
①當x>3時,y<0;
②3a+b<0;
③;
④;
其中正確的結論是( )
A.①③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,正方形ABCD,點E是DC邊上的一動點,過點C作AE的垂線交AE延長線于點F,過D作DH⊥CF,垂足為H,點O是AC中點,連HO.
(1)如圖1,當∠CAE=∠DAE時,證明:AE=2CF;
(2)如圖2,當點E在DC上運動時,線段AF與線段HO之間是否存在確定的數量關系?若存在,證明你發現的結論:若不存在,請說明理由;
(3)當E為DC中點時,AC=2,直接寫出AF的長 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com