【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側,BD⊥l,AE⊥l,垂足分別為D、E.
求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉90°至AB,連接B,C,求△AB,C的面積.
【答案】(1)見詳解;(2)18
【解析】
(1)利用同角的余角相等判斷出∠CAE=∠BCD,即可得出結論;
(2)先作出高,進而判斷出△ABC≌△B'AG,求出B'G,最后用三角形的面積公式即可得出結論.
解:(1)∵BD⊥l,AE⊥l,
∴∠AEC=∠CDB=90°,
∴∠CAE+∠ACE=90°,
∵∠ACB=90°,
∴∠ACE+∠BCD=90°,
∴∠CAE=∠BCD,
在△ACE和△CBD中,
∴△ACE≌△CBD;
(2)如圖2,
過點B'作B'G⊥AC于G,
∴∠B'AG+∠AB'G=90°,
∵∠BAB'=90°,
∴∠BAC+∠B'AG=90°,
∴∠AB'G=∠BAC,由旋轉知,AB=AB',
在△ABC和△B'AG中,
∴△ABC≌△B′AG,
∴B′G=AC=6,
∴S△ACB′=AC×B′G=18;
科目:初中數學 來源: 題型:
【題目】九年三班的小雨同學想了解本校九年級學生對哪門課程感興趣,隨機抽取了部分九年級學生進行調查(每名學生必只能選擇一門課程).將獲得的數據整理繪制如下兩幅不完整的統計圖.
據統計圖提供的信息,解答下列問題:
(1)在這次調查中一共抽取了 名學生,m的值是 .
(2)請根據據以上信息直在答題卡上補全條形統計圖;
(3)扇形統計圖中,“數學”所對應的圓心角度數是 度;
(4)若該校九年級共有1000名學生,根據抽樣調查的結果,請你估計該校九年級學生中有多少名學生對數學感興趣.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線與x軸、y軸分別交于點B、C,拋物線
經過點B、C,并與x軸交于另一點A.
(1)求此拋物線及直線AC的函數表達式;
(2)垂直于y軸的直線l與拋物線交于點P(,
),Q(
,
),與直線BC交于點,N(
,
),若
<
<
,結合函數的圖象,求
的取值范圍;
(3)經過點D(0,1)的直線m與射線AC、射線OB分別交于點M、N.當直線m繞點D旋轉時, 是否為定值,若是,求出這個值,若不是,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網格點上,其中,C點坐標為(1,2).
(1)寫出點A、B的坐標;
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,寫出A′B′C′的三個頂點坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E、F分別是菱形ABCD的邊BC、CD上的點,且∠EAF=∠D=60°,∠FAD=45°,則∠CFE的度數為( 。
A. 30° B. 45° C. 60° D. 75°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.動點P從點D出發,沿射線DA的方向以每秒2兩個單位長的速度運動,動點Q從點C出發,在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發,當點Q運動到點B時,點P隨之停止運動.設運動的時間為t(秒).當t為__________ 時,以B,P,Q三點為頂點的三角形是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,直線AB∥CD,E為AB、CD間的一點,連接EA、EC.
(1)如圖①,若∠A=20°,∠C=40°,則∠AEC= °.
(2)如圖②,若∠A=x°,∠C=y°,則∠AEC= °.
(3)如圖③,若∠A=α,∠C=β,則α,β與∠AEC之間有何等量關系.并簡要說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=﹣x2﹣4x+c經過點A(2,0).
(1)求拋物線的解析式和頂點坐標;
(2)若點B(m,n)是拋物線上的一動點,點B關于原點的對稱點為C.
①若B、C都在拋物線上,求m的值;
②若點C在第四象限,當AC2的值最小時,求m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com