【題目】如圖,點B是⊙O上一點,弦CD⊥OB于點E,過點C的切線交OB的延長線于點F,連接DF,
(1)求證:DF是⊙O的切線;
(2)若⊙O的半徑為2,∠CFD=60°,求CD的長.
【答案】(1)詳見解析;(2)2.
【解析】
(1)連接OD,如圖,利用切線的性質得∠OCD+∠DCF=90°,再利用垂徑定理得到OF為CD的垂直平分線,則CF=DF,所以∠CDF=∠DCF,加上∠CDO=∠OCD,則∠CDO+∠CDB=90°,然后根據切線的判定定理得到結論;
(2)根據切線的性質得到∠CFO=30°,求得∠COF=60°,根據直角三角形的性質和垂徑定理即可得到結論.
(1)證明:連接OD,如圖,
∵CF是⊙O的切線
∴∠OCF=90°,
∴∠OCD+∠DCF=90°
∵直徑AB⊥弦CD,
∴CE=ED,即OF為CD的垂直平分線
∴CF=DF,
∴∠CDF=∠DCF,
∵OC=OD,
∴∠CDO=∠OCD
∴∠CDO+∠CDB=∠OCD+∠DCF=90°,
∴OD⊥DF,
∴DF是⊙O的切線;
(2)解:∵FC,FD是⊙O的切線,∠CFD=60°,
∴∠CFO=30°,
∴∠COF=60°,
∵CD⊥OB,
∴∠OCE=30°,
∵OC=2,
∴CE=OC=
,
∴CD=2CE=2.
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線經過平行四邊形
的頂點
、
、
,拋物線與
軸的另一交點為
.經過點
的直線
將平行四邊形
分割為面積相等的兩部分,與拋物線交于另一點
.點
為直線
上方拋物線上一動點,設點
的橫坐標為
.
(1)求拋物線的解析式;
(2)當何值時,
的面積最大?并求最大值的立方根;
(3)是否存在點使
為直角三角形?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明家、食堂,圖書館在同一條直線上,小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,如圖反映了這個過程中,小明離家的距離y(km)與時間x(min)之間的對應關系,根據圖象,下列說法正確的是( 。
A.小明吃早餐用了25min
B.食堂到圖書館的距離為0.6km
C.小明讀報用了30min
D.小明從圖書館回家的速度為0.8km/min
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,二次函數y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,正方形ABCD,∠EAF=45°,
(1)如圖1,當點E,F分別在邊BC,CD上,連接EF,求證:EF=BE+DF;
(2)如圖2,點M,N分別在邊AB,CD上,且BN=DM,當點E,F分別在BM,DN上,連接EF,請探究線段EF,BE,DF之間滿足的數量關系,并加以證明;
(3)如圖3,當點E,F分別在對角線BD,邊CD上,若FC=2,則BE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數y=ax2+bx+c與x軸相交于點A(﹣1,0)和B(3,0),與y軸交于點C,連接AC、BC,且∠ACB=90°.
(1)求二次函數的解析式;
(2)如圖(1),若N是AC的中點,M是BC上一點,且滿足CM=2BM,連AM、BN相交于點E,求點M的坐標和△EMB的面積;
(3)如圖(2),將△AOC沿直線BC平移得到△A′O′C′,再將△A′O′C′沿A′C′翻折得到△A′O′C′,連接AO′,AC′,請問△AO′C′能否構成等腰三角形?若能,請求出所有符合條件的點C的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某區域平面示意圖如圖,點O在河的一側,AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數據:sin73.7°≈,cos73.7°≈
,tan73.7°≈
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,AB=AC,D為直線BC上一點,E為直線AC上一點,AD=AE,設∠BAD=α,∠CDE=β,
(1)如圖1,若點D在線段BC上,點E在線段AC上.∠ABC=60°,∠ADE=70°,則α= °;β= °.
(2)如圖2,若點D在線段BC上,點E在線段AC上,則α,β之間有什么關系式?說明理由.
(3)是否存在不同于(2)中的α,β之間的關系式?若存在,請寫出這個關系式(寫出一種即可),說明理由;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知在矩形ABCD中,AD=10,E是CD上一點,且DE=5,點P是BC上一點,PA=10,∠PAD=2∠DAE.
(1)求證:∠APE=90°;
(2)求AB的長;
(3)如圖2,點F在BC邊上且CF=4,點Q是邊BC上的一動點,且從點C向點B方向運動.連接DQ,M是DQ的中點,將點M繞點Q逆時針旋轉90°,點M的對應點是M′,在點Q的運動過程中,①判斷∠M′FB是否為定值?若是說明理由.②求AM′的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com