【題目】如圖1,內接于
,AD是直徑,
的平分線交BD于H,交
于點C,連接DC并延長,交AB的延長線于點E.
(1)求證:;
(2)若,求
的值
(3)如圖2,連接CB并延長,交DA的延長線于點F,若,求
的面積.
【答案】(1)見解析;(2) ;(3)
【解析】
(1)根據直徑所對的圓周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;
(2)連接OC交BD于G,設,根據垂徑定理的推論可得出OC垂直平分BD,進而推出OG為中位線,再判定
,利用對應邊成比例即可求出
的值;
(3)連接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,設
,則
,再判定
,利用對應邊成比例求出m的值,進而得到AB和AD的長,再用勾股定理求出BD,可求出△BED的面積,由C為DE的中點可得△BEC為△BED面積的一半,即可得出答案.
(1)證明:∵AD是的直徑
∵AC平分
在△ACD和△ACE中,
∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC
∴△ACD≌△ACE(ASA)
(2)如圖,連接OC交BD于G,
,設
,
則,OC=
AD=
∴OC垂直平分BD
又∵O為AD的中點
∴OG為△ABD的中位線
∴OC∥AB,OG=,CG=
(3)如圖,連接OC交BD于G,
由(2)可知:OC∥AB,OG=AB
∴∠BHA=∠GCH
在△BHA和△GHC中,
∵∠BHA=∠GCH,AH=CH,∠BHA=∠GHC
∴
設,則
又,
∴
,
∵AD是的直徑
又
科目:初中數學 來源: 題型:
【題目】已知:在△ABC中,∠BAC=90°,AB=AC.
(1)如圖1,將線段AC繞點A逆時針旋轉60°得到AD,連結CD、BD,∠BAC的平分線交BD于點E,連結CE.
①求證:∠AED=∠CED;
②用等式表示線段AE、CE、BD之間的數量關系(直接寫出結果);
(2)在圖2中,若將線段AC繞點A順時針旋轉60°得到AD,連結CD、BD,∠BAC的平分線交BD的延長線于點E,連結CE.請補全圖形,并用等式表示線段AE、CE、BD之間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y關于x的函數表達式是,下列結論不正確的是( )
A.若,函數的最大值是5
B.若,當
時,y隨x的增大而增大
C.無論a為何值時,函數圖象一定經過點
D.無論a為何值時,函數圖象與x軸都有兩個交點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線的圖象與x軸交于
,B兩點,與y軸交于點
,對稱軸
與x軸交于點H.
(1)求拋物線的函數表達式
(2)直線與y軸交于點E,與拋物線交于點P,Q(點P在y軸左側,點Q 在y軸右側),連接CP,CQ,若
的面積為
,求點P,Q的坐標.
(3)在(2)的條件下,連接AC交PQ于G,在對稱軸上是否存在一點K,連接GK,將線段GK繞點G逆時針旋轉90°,使點K恰好落在拋物線上,若存在,請直接寫出點K的坐標不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達高鐵,求A地到C地之間高鐵線路的長(結果保留整數)(參考數據:sin67°≈0.92;cos67°≈0.38;≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y= (n≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點B 坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=
.
(1)求該反比例函數和一次函數的解析式;
(2)求△AOB的面積;
(3)點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①是由五個完全相同的小正方體組成的立體圖形,將圖①中的一個小正方體改變位置后如圖②.則三視圖發生改變的是( )
A.主視圖B.俯視圖
C.左視圖D.主視圖、俯視圖和左視圖
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com