精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,AB5AD3,動點P滿足SPABS矩形ABCD,則點PA、B兩點距離之和PA+PB的最小值為_____

【答案】

【解析】

已知SPABS矩形ABCD ,則可以求出△ABP的高,此題為“將軍飲馬”模型,過P點作直線lAB,作點A關于l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.

解:設△ABPAB邊上的高是h

SPABS矩形ABCD,

ABhABAD

hAD2,

∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.

RtABE中,∵AB5,AE2+24,

BE,

PA+PB的最小值為

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△OA1B1,△A1A2B2,△A2A3B3,是分別以A1A2,A3,為直角頂點,一條直角邊在x軸正半軸上的等腰直角三角形,其斜邊的中點C1x1,y1),C2x2,y2),C3x3,y3),均在反比例函數x0)的圖象上.則y1+y2+…+y8的值為(

A.B.6C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 如圖,點E在△DBC的邊DB上,點A在△DBC內部,∠DAE=BAC=90°AD=AE,AB=AC.給出下列結論:①BD=CE;②BC=DC;③∠ABD+ECB=45°;④BDCE.其中正確的結論是( 。

A.①②③④B.②④C.①②③D.①③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項目對全班學生進行調查(每名學生分別選一個活動項目),并根據調查結果列出統計表,繪制成扇形統計圖.

男、女生所選項目人數統計表

項目

男生(人數)

女生(人數)

機器人

7

9

3D打印

m

4

航模

2

2

其他

5

n

根據以上信息解決下列問題:

1m   ,n   

2)扇形統計圖中機器人項目所對應扇形的圓心角度數為   °

3)從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,AO的半徑,AC的弦,點F的中點,OFAC于點E,AC=8,EF=2

1)求AO的長;

2)過點CCDAO,交AO延長線于點D,求sinACD的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F

1)證明:DF是⊙O的切線;

2)若AC3AE,FC6,求AF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】大千故里,文化內江,我市某中學為傳承大千藝術精神,征集學生書畫作品.王老師從全校20個班中隨機抽取了4個班,對征集作品進行了數量分析統計,繪制了如下兩幅不完整的統計圖.

1)王老師采取的調查方式是   (填普查抽樣調査),王老師所調查的4個班共征集到作品    件,并補全條形統計圖;

2)在扇形統計圖中,表示班的扇形周心角的度數為   ;

3)如果全校參展作品中有4件獲得一等獎,其中有1名作者是男生,3名作者是女生.現要從獲得一等獎的作者中隨機抽取兩人去參加學校的總結表彰座談會,求恰好抽中一男一女的概率.(要求用樹狀圖或列表法寫出分析過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2017江西。┤鐖D1,研究發現,科學使用電腦時,望向熒光屏幕畫面的視線角”α約為20°,而當手指接觸鍵盤時,肘部形成的手肘角”β約為100°.圖2是其側面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學使用電腦時,求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學要求的100°?

(參考數據:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結果精確到個位)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视