【題目】如圖,對面積為1的△ABC逐次進行以下操作:第一次操作,分別延長AB,BC,CA至點A1 , B1 , C1 , 使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1 , B1 , C1 , 得到△A1B1C1 , 記其面積為S1;第二次操作,分別延長A1B1 , B1C1 , C1A1至點A2 , B2 , C2 , 使得A2B1=2A1B1 , B2C1=2B1C1 , C2A1=2C1A1 , 順次連接A2 , B2 , C2 , 得到△A2B2C2 , 記其面積為S2 , 則S2=。
科目:初中數學 來源: 題型:
【題目】2013年3月28是第18個全國中小學生安全教育日.某校為增強學生的安全意識,組織全校學生參加安全知識測試,并對測試成績做了詳細統計,將測試成績(成績都是整數,試卷滿分30分)繪制成了如下“頻數分布直方圖”.請回答:
(1)參加全校安全知識測試的學生有 名;
(2)中位數落在 分數段內;
(3)若用各分數段的中間值(如5.5~10.5的中間值為8)來代替本段均分,請你估算本次測試成績全校平均分約是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,射線OA的方向是北偏東15°,射線OB的方向是北偏西40°,∠AOB=∠AOC,射線OD是OB的反向延長線.
(1)射線OC的方向是;
(2)求∠COD的度數;
(3)若射線OE平分∠COD,求∠AOE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某工藝廠為配合北京奧運,設計了一款成本為20元∕件的工藝品投放市場進行試銷.經過調查,得到如下數據:
銷售單價x(元/件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數關系,并求出函數關系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價﹣成本總價)
(3)當地物價部門規定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點C出發,按C→B→A的路徑,以2cm每秒的速度運動,設運動時間為t秒,當t為___________時,△ACP是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC , BD平分∠ABC . 過點D作AB的平行線,過點B作AC的平行線,兩平行線相交于點E , BC交DE于點F , 連接CE . 求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點O逆時針旋轉90°,點B旋轉到點C的位置,一條拋物線正好經過點O,C,A三點.
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動點P,過點P作x軸的平行線交拋物線于點M,分別過點P,點M作x軸的垂線,交x軸于E,F兩點,問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.
(3)如果x軸上有一動點H,在拋物線上是否存在點N,使O(原點)、C、H、N四點構成以OC為一邊的平行四邊形?若存在,求出N點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.
(1)求k的值;
(2)點N(a,1)是反比例函數(x>0)圖象上的點在x軸上是否存在點P,使得PM+PN最。咳舸嬖,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com