精英家教網 > 初中數學 > 題目詳情

【題目】光明文具廠工人的工作時間:每月26天,每天8小時.待遇:按件計酬,多勞多得,每月另加福利工資920元,按月結算.該廠生產A,B兩種型號零件,工人每生產一件A種型號零件,可得報酬0.85元,每生產一件B種型號零件,可得報酬1.5元,下表記錄的是工人小王的工作情況:

生產A種型號零件/件

生產B種型號零件/件

總時間/分

2

2

70

6

4

170

根據上表提供的信息,請回答如下問題:
(1)小王每生產一件A種型號零件、每生產一件B種型號零件,分別需要多少分鐘?
(2)設小王某月生產A種型號零件x件,該月工資為y元,求y與x的函數關系式;
(3)如果生產兩種型號零件的數目無限制,那么小王該月的工資數目最多為多少?

【答案】
(1)

解:設小王生產一個A種產品用a分鐘,生產一個B種產品用b分鐘;

根據題意得 ,解得 ,

即小李生產一個A種產品用15分鐘,生產一個B種產品用20分鐘.


(2)

解:

y=0.85x+×1.5+920,

即y=﹣0.275x+1856.


(3)

解:

由解析式y=﹣0.275x+1856可知:x越小,y值越大,

并且生產A,B兩種產品的數目又沒有限制,所以,當x=0時,y=1856.

即小王該月全部時間用來生產B種產品,最高工資為1856元.


【解析】(1)設小王生產一個A種產品用a分鐘,生產一個B種產品用b分鐘,根據表格中的數據,列方程組求a、b的值;
(2)根據:月工資y=生產一件A種產品報酬×x+生產一件B種產品報酬×+福利工資920元,列出函數關系式;
(3)利用(2)得到的函數關系式,根據一次函數的增減性求解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,正三角形BCE所在平面與菱形ABCD所在的平面垂直,FD⊥平面ABCD,且
(1)判斷直線EF平面ABCD的位置關系,并說明理由;
(2)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AB是⊙O的直徑,I是△ABC內一點,AI的延長線交BC于點D,交⊙O于E,連接BE,BI.若IB平分∠ABC,EB=EI.
(1)求證:AE平分∠BAC;
(2)若BA= ,OI⊥AD于I,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市招聘教師,對應聘者分別進行教學能力、科研能力、組織能力三項測試,其中甲、乙兩人的成就如下表:(單位:分)

項目
人員

教學能力

科研能力

組織能力

86

93

73

81

95

79


(1)根據實際需要,將閱讀能力、科研能力、組織能力三項測試得分按5:3:2的比確定最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?
(2)按照(1)中的成績計算方法,將每位應聘者的最后成績繪制成如圖所示的頻數分布直方圖(每組分數段均包含左端數值,不包含右端數值),并決定由高分到低分錄用8人.甲、乙兩人能否被錄用?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知函數的圖象與x軸、y軸分別交于點A,B,與函數y=x的圖象交于點M,點M的橫坐標為2.在x軸上有一點P (a,0)(其中a>2),過點P作x軸的垂線,分別交函數和y=x的圖象于點C,D.

(1)求點A的坐標;

(2)若OB=CD,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,M、N分別是正方形ABCD邊DC、AB的中點,分別以AE、BF為折痕,使點D、點C落在MN的點G處,則△ABG是 三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學將一個三角形紙片的一個頂點與該菱形頂點D重合,按順時針方向旋轉三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點E、F,∠EDF=60°,當CE=AF時,如圖1小芳同學得出的結論是DE=DF.

(1)繼續旋轉三角形紙片,當CE≠AF時,如圖2小芳的結論是否成立?若成立,加以證明;若不成立,請說明理由
(2)再次旋轉三角形紙片,當點E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數量關系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關系式,并指出當x為何值時,y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45°,給出以下五個結論:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正確的序號是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法:

(1)在同一平面內,不相交的兩條直線一定平行.(2)在同一平面內,不相交的兩條線段一定平行.(3)相等的角是對頂角.(4)兩條直線被第三條直線所截,同位角相等.(5)兩條平行線被第三條直線所截,一對內錯角的角平分線互相平行.其中,正確說法的個數是(

A. 1個 B.2個 C.3個 D.4個

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视