【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點P,連接AC,BC.
(1)求證:AC平分∠BAD;
(2)若AB=3,AC=2,求EC和PB的長.
【答案】(1)見解析;(2)EC=,PB=
.
【解析】
(1)連接OC,如圖,利用切線的性質得到OC⊥PE,則判斷OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠DAC=∠OAC;
(2)利用圓周角定理得到∠ACB=90°,再利用勾股定理計算出BC=2,再證明Rt△ABC∽Rt△ACE,利用相似比計算出EC=,接著利用勾股定理計算出AE=
,然后證明Rt△ABC∽Rt△ACE,從而利用相似比計算PB的長.
解:(1)證明:連接OC,如圖,
∵PE是⊙O的切線,
∴OC⊥PE,
∵AE⊥PE,
∴OC∥AE,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OAC,
∴AC平分∠BAD;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°
在Rt△ABC中,BC==
=1,
在Rt△ABC和Rt△ACE中,
∵∠DAC=∠OAC,∠AEC=∠ACB=90°,
∴Rt△ABC∽Rt△ACE,
∴AC:AB=EC:BC,即2:3=EC:1,
∴EC=;
在Rt△ACE中,AE==
=
,
又∵OC∥AE,
∴Rt△ABC∽Rt△ACE,
∴OC:AE=PO:PA,即:
=(PB+
):(PB+3),
∴PB=.
科目:初中數學 來源: 題型:
【題目】“餃子“又名“交子”或者“嬌耳”,是新舊交替之意,它是重慶人民的年夜飯必吃的一道美食.今年除夕,小僑跟著媽媽一起包餃子準備年夜飯,體驗濃濃的團圓氣氛.已知小僑家共10人,平均每人吃10個餃子,計劃用10分鐘將餃子包完.
(1)若媽媽每分鐘包餃子的速度是小僑速度的2倍少2個,那么小僑每分鐘至少要包多少個餃子?
(2)小僑以(1)問中的最低速度,和媽媽同時開始包餃子,媽媽包餃子的速度在(1)問的最低速度基礎上提升了a%,在包餃子的過程中小僑外出耽誤了
分鐘,返家后,小僑與媽媽一起包完剩下的餃子,所用時間比原計劃少了
a%,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學對本校初2017屆500名學生中中考參加體育加試測試情況進行調查,根據男生1000米及女生800米測試成績整理,繪制成不完整的統計圖,(圖①,圖②),請根據統計圖提供的信息,回答下列問題:
(1)該校畢業生中男生有 人;扇形統計圖中a= ;
(2)補全條形統計圖;
(3)若500名學生中隨機抽取一名學生,這名學生該項成績在8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線y=-x+
與坐標軸分別交于點A、B,且點C在x軸負半軸上,且AB:AC=1:2.
(1)求A、C兩點的坐標;
(2)若點M從點C出發,以每秒1個單位的速度沿射線CB運動,連接AM,設△ABM的面積為S,點M的運動時間為t,寫出S關于t的函數關系式,并寫出自變量的取值范圍;
(3)點P是y軸上的點,在坐標平面內是否存在點Q,使以A、B、P、Q為頂點的四邊形是菱形?若存在,請直接寫出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形中,
,
,
,點
從點
出發沿
向點
勻速運動,速度為
,同時,點
從點
出發沿
向點
勻速運動,速度為
,當點
停止運動時,點
也隨之停止運動,過點
做
交
于點
,連接
、
.設運動的時間為
.
(1)當時,求
的值;
(2)是否存在某一時刻,使得
的面積是平行四邊形
面積的
?若存在,求出相應
的值;若不存在,請說明理由;
(3)過點作
交
于點
,是否存在某一時刻
,使得
在線段
的垂直平分線上?若存在,求出相應
的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現金、D其他,該小組對某超市一天內購買者的支付方式進行調查統計,得到如下兩幅不完整的統計圖.
請你根據統計圖提供的信息,解答下列問題:
(1)本次一共調查了多少名購買者?
(2)請補全條形統計圖;在扇形統計圖中A種支付方式所對應的圓心角為 度.
(3)若該超市這一周內有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一直線分別于
軸、
軸交于A、B兩點,點A、點D關于原點對稱,過點A的拋物線
與射線AB交于另一點C,若將
沿著CO所在的直線翻折得到
,
與
重疊部分的面積為
的
.
(1)求B、D兩點的坐標(用m的代數式表示).
(2)當落在拋物線上時,求二次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,把拋物線 先向右平移1個單位長度,再向下平移4個單位長度,得到拋物線
,所得拋物線與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,頂點為M.
(1)寫出h、k的值及點A、B的坐標;
(2)判斷 的形狀,并計算其面積;
(3)點P是拋物線上的一動點,在y軸上存在點Q,使以點A、B、P、Q為頂點組成的四邊形是平行四邊形,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙三位運動員在相同條件下各射靶次,每次射靶的成績如下:
甲:,
,
,
,
,
,
,
,
,
乙:,
,
,
,
,
,
,
,
,
丙:,
,
,
,
,
,
,
,
,
(1)根據以上數據完成下表:
平均數 | 中位數 | 方差 | |
甲 | |||
乙 | |||
丙 |
(2)比賽時三人依次出場,順序由抽簽方式決定,求甲、乙相鄰出場的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com