【題目】如圖,是圓
的直徑,
,點
是圓
上一動點(與
,
不重合),
的平分線交圓
于
.
判斷
的形狀,并證明你的結論;
若
是
的內心,當點
運動時,
、
中是否存在長度保持不變的線段?如果存在,請指出并求其長度;如果不存在,請說明理由.
科目:初中數學 來源: 題型:
【題目】下面是某同學對多項式(x2﹣4x+2)(x2﹣4x+6)+4進行因式分解的過程
解:設x2﹣4x=y,
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學第二步到第三步運用了因式分解的 (填序號).
A.提取公因式 B.平方差公式
C.兩數和的完全平方公式 D.兩數差的完全平方公式
(2)該同學在第四步將y用所設中的x的代數式代換,得到因式分解的最后結果.這個結果是否分解到最后? .(填“是”或“否”)如果否,直接寫出最后的結果 .
(3)請你模仿以上方法嘗試對多項式(x2﹣2x)(x2﹣2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知、
兩地之間有一條270千米的公路,甲、乙兩車同時出發,甲車以每小時60千米/時的速度沿此公路從
地勻速開往
地,乙車從
地沿此公路勻速開往
地,兩車分別到達目的地后停止甲、乙兩車相距的路程
(千米)與甲車的行駛時間
(時)之間的函數關系如圖所示:
(1)乙年的速度為______千米/時,_____,
______.
(2)求甲、乙兩車相遇后與
之間的函數關系式,并寫出相應的自變量
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l1:y=﹣2x+6與坐標軸交于A,B兩點,直線l2:y=kx+2(k>0)與坐標軸交于點C,D,直線l1,l2與相交于點E.
(1)當k=2時,求兩條直線與x軸圍成的△BDE的面積;
(2)點P(a,b)在直線l2:y=kx+2(k>0)上,且點P在第二象限.當四邊形OBEC的面積為時.
①求k的值;
②若m=a+b,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)如圖,在矩形ABCD中,AB=12cm,BC=8cm.點E、F、G分別從點
A、B、C同時出發,沿矩形的邊按逆時針方向移動,點E、G的速度均為2cm/s,點F的速
度為4cm/s,當點F追上點G(即點F與點G重合)時,三個點隨之停止移動.設移動開始后
第ts時,△EFG的面積為Scm2.
(1)當t=1s時,S的值是多少?
(2)寫出S與t之間的函數解析式,并指出自變量t的取值范圍;
(3)若點F在矩形的邊BC上移動,當t為何值時,以點B、E、F為頂點的三角形與以C、F、G為頂點的三角形相似?請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某共享單車公司提供了手機和會員卡兩種支付方式.若用手機支付方式,騎行時間在半小時以內(含半小時)不收費,超出半小時后每半小時收費1元,若選擇會員卡支付,騎行時間每半小時收費0.8元,設騎行時間為x小時.
(1)根據題意,填寫下表(單位:元):
騎行時間(小時) | 0.5 | 2 | 3 | … |
手機支付付款金額(元) | 0 | … | ||
會員卡支付付款金額(元) | 3.2 | … |
(2)設用手機支付付款金額為y1元,用會員卡支付付款金額為y2元,分別寫出y1,y2關于x的函數關系式;
(3)若李老師經常騎行該公司的共享單車,他應選擇哪種支付方式比較合算?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com