【題目】如圖,已知,
,點
是線段
上一點(不與端點
重合),
、
分別平分
和
交
于點
、
.
(1)請說明:;
(2)當點在
上移動時,請寫出
和
之間滿足的數量關系為______;
(3)若,則當點
移動到使得
時,請直接寫出
______(用含
的代數式表示).
【答案】(1)見解析;(2)∠BQE=2∠BNE,證明見解析;(3)∠BEQ=,證明見解析.
【解析】
(1)根據,可證明
,從而可證明∠1=∠DBC,根據
可證明
,從而證明BD//EF;
(2)通過角平分線和平行線的性質可證明∠BNE=∠NEQ,通過三角形的外角定理可證明∠BQE=2∠BNE;
(3)通過和三角形內角和定理可證明∠BEM=∠BNE,由(1)中∠BNE=∠NEQ可得∠BEM=∠NEQ,所以∠BEQ=∠MEN,通過角平分線的性質可得∠MEN=
=
,即∠BEQ=
.
(1)證明:
,
,
,
又,
,
∴BD//EF.
(2)∠BQE=2∠BNE,證明如下:
∵BD//EF
∴∠FEN=∠BNE
又∵EN平分∠QEF,
∴∠FEN=∠NEQ,
∴∠BNE=∠NEQ,
∵∠BNE+∠NEQ=∠BQE,
∴∠BQE=2∠BNE.
(3)∠BEQ=,證明如下:
∵EN平分∠QEF,
∴∠NEQ=,
同理可得∠QEM=,
∴∠MEN=,
∵,
∴∠2=,
∴∠BEF=180°-,
∴∠MEN=,
在△BEM中,∠CBD+∠BME+∠BEM=180°,
在△BEN中,∠CBD+∠BNE+∠BEN=180°,
∵,
∴∠BEM=∠BNE,
∵由(1)得∠BNE=∠NEQ,
∴∠BEM=∠NEQ,
∴∠BEQ=∠BEM+∠MEQ=∠NEQ+∠MEQ=.
科目:初中數學 來源: 題型:
【題目】速度分別為100km/h和akm/h(0<a<100)的兩車分別從相距s千米的兩地同時出發,沿同一方向勻速前行.行駛一段時間后,其中一車按原速度原路返回,直到與另一車相遇時兩車停止.在此過程中,兩車之間的距離y(km)與行駛時間t(h)之間的函數關系如圖所示.下列說法:①a=60;②b=2;③c=b+;④若s=60,則b=
.其中說法正確的是( 。
A.①②③B.②③④C.①②④D.①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中,正確的是( )
A. 方程5x2=x有兩個不相等的實數根
B. 方程x2﹣8=0有兩個相等的實數根
C. 方程2x2﹣3x+2=0有兩個整數根
D. 當k>時,方程(k﹣1)x2+2x﹣3=0有兩個不相等的實數根
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等腰直角和等腰直角
如圖放置,
,
,
,其中,
、
、
在一條直線上,連接
并延長交
于
,
(1)求證:
(2)與
有什么位置關系?請說明理由.
(3)若,
與
有什么數量關系?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的正方形網格中,每個小正方形的邊長都為1個單位長度,三角形的頂點都在正方形網格的格點上,將三角形
經過平移后得到三角形
,其中點
是點
的對應點.
(1)畫出平移后得到的三角形;
(2)連接、
,則線段
、
的關系為______;
(3)四邊形的面積為______(平方單位).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】松雷中學圖書館近日購進甲、乙兩種圖書,每本甲圖書的進價比每本乙圖書的進價高20元,花780元購進甲圖書的數量與花540元購進乙圖書的數量相同.
(1)求甲、乙兩種圖書每本的進價分別是多少元?
(2)松雷中學計劃購進甲、乙兩種圖書共70本,總購書費用不超過4000元,則最多購進甲種圖書多少本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對平面直角坐標系中的點P(x,y),定義d=|x|+|y|,我們稱d為P(x,y)的幸福指數.對于函數圖象上任意一點P(x,y),若它的幸福指數d≥1恒成立,則稱此函數為幸福函數,如二次函數y=x2+1就是一個幸福函數,理由如下:設P(x,y)為y=x2+1上任意一點,d=|x|+|y|=|x|+|x2+1|,∵|x|≥0,|x2+1|=x2+1≥1,∴d≥1.∴y=x2+1是一個幸福函數.
(1)若點P在反比例函數y=的圖象上,且它的幸福指數d=2,請直接寫出所有滿足條件的P點坐標;
(2)一次函數y=﹣x+1是幸福函數嗎?請判斷并說明理由;
(3)若二次函數y=x2﹣(2m+1)x+m2+m(m>0)是幸福函數,試求出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:,
平分
,點
在射線
上,
、
分別是射線
、
上的動點(
、
不與點
重合),連接
交射線
于點
.設
.
(1)如圖1,若,則:①
______;②當
時,
______
.
(2)如圖2,若,垂足為
,則是否存在這樣的
的值,使得
中存在兩個相等的角?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們規定:相等的實數看作同一個實數.有下列六種說法:
①數軸上有無數多個表示無理數的點;
②帶根號的數不一定是無理數;
③每個有理數都可以用數軸上唯一的點來表示;
④數軸上每一個點都表示唯一一個實數;
⑤沒有最大的負實數,但有最小的正實數;
⑥沒有最大的正整數,但有最小的正整數.
其中說法錯誤的有_____(注:填寫出所有錯誤說法的編號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com