【題目】將紙片沿
折疊,其中
.
(1)如圖1,點落在
邊上的點
處,
與
是否平行?請說明理由;
(2)如圖2,點落在四邊形
內部的點
處,探索
與
之間的數量關系,并說明理由.
【答案】(1),理由見解析;(2)
,理由見解析
【解析】
(1)AB與DF平行.根據翻折可得出∠DFC=∠C,結合∠B=∠C即可得出∠B=∠DFC,從而證出AB∥DF;
(2)連接GC,由翻折可得出∠DGE=∠ACB,再根據三角形外角的性質得出∠1=∠DGC+∠DCG,∠2=∠EGC+∠ECG,通過角的運算即可得出∠1+∠2=2∠B.
解:(1)
∵將紙片沿
折疊
∴
又∵
∴
則(同位角相等,兩直線平行)
(2)連接GC,如圖.
由翻折得:∠DGE=∠ACB.
∵∠1=∠DGC+∠DCG,∠2=∠EGC+∠ECG,
∴∠1+∠2=∠DGC+∠DCG+∠EGC+∠ECG=(∠DGC+∠EGC)+(∠DCG+∠ECG)=∠DGE+∠DCE=2∠ACB.
∵∠B=∠ACB,
∴∠1+∠2=2∠B.
∴
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,將BD向兩個方向延長,分別至點E和點F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y=(x>0)的圖象與一次函數y=﹣
x+4的圖象交于A和B(6,n)兩點.
(1)求k和n的值;
(2)若點C(x,y)也在反比例函數y=(x>0)的圖象上,求當2≤x≤6時,函數值y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請認真觀察圖形,解答下列問題:
(1)根據圖1中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1: .
方法2: .
(2)從中你能發現什么結論?請用等式表示出來: .
(3)利用(2)中結論解決下面的問題:如圖2,兩個正方形邊長分別為a、b,如果a+b=10,ab=21,求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是菱形ABCD邊上的一動點,它從點A出發沿在A→B→C→D路徑勻速運動到點D,設△PAD的面積為y,P點的運動時間為x,則y關于x的函數圖象大致為( 。
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《九章算術》是我國東漢初年編訂的一部數學經典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術》中的算籌圖是豎排的,現在我們把它改為橫排,如圖1、圖2,圖中各行從左到右列出的算籌數分別表示未知數的系數與相應的常數項,把圖1所示的算籌圖用我們現在所熟悉的方程組形式表述出來就是
類似地,圖2所示的算籌圖我們可以用方程組形式表述為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖,,
.
求證:
證明:因為(已知)
所以(_______)
所以__________.(兩直線平行,內錯角相等)
因為.(已知)
所以__________.(_______)
所以.(_______)
所以.(等式性質1)
即.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=
AD⑤S△APO=
,正確的個數是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的邊AB在x軸上,點B坐標(﹣3,0),點C在y軸正半軸上,且sin∠CBO=,點P從原點O出發,以每秒一個單位長度的速度沿x軸正方向移動,移動時間為t(0≤t≤5)秒,過點P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.
(1)求點D坐標.
(2)求S關于t的函數關系式.
(3)在直線l移動過程中,l上是否存在一點Q,使以B、C、Q為頂點的三角形是等腰直角三角形?若存在,直接寫出Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com