科目: 來源: 題型:
【題目】如圖,2×2網格(每個小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個格點.拋物線l的解析式為y=(-1)nx2+bx+c(n為整數).
(1)n為奇數,且l經過點H(0,1)和C(2,1),求b,c的值,并直接寫出哪個格點是該拋物線上的頂點;
(2)n為偶數,且l經過點A(1, 0)和B(2,0),通過計算說明點F(0,2)和H(0,1)是否在拋物線上;
(3)若l經過這九個格點中的三個,直接寫出滿足這樣條件的拋物線條數.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數y=kx-1(x>0)的圖象經過點A(1,2)和點B(m,n)(m>1),過點B作y軸的垂線,垂足為C.
(1)求該反比例函數解析式;
(2)當△ABC面積為2時,求點B的坐標.
(3)P為線段AB上一動點(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點P,直接寫出a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線L: (常數t>0)與x軸從左到右的交點為B,A,過線段OA的中點M作MP⊥x軸,交雙曲線
于點P,且OA·MP=12.
(1)求k值;
(2)當t=1時,求AB長,并求直線MP與L對稱軸之間的距離;
(3)把L在直線MP左側部分的圖象(含與直線MP的交點)記為G,用t表示圖象G最高點的坐標;
(4)設L與雙曲線有個交點的橫坐標為x0,且滿足4≤x0≤6,通過L位置隨t變化的過程,直接寫出t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形是以原點
為對稱中心的矩形,
,
,
和
分別與
軸交于點
、
,連接
.
(1)寫出點和點
的坐標;
(2)求四邊形的面積;
(3)判斷點在矩形
的內部還是外部;
(4)要使直線與矩形
沒有公共點,直接寫出
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,,
.
軸,且與直線
交于點
,
軸并交
軸于點
,點
是折線
上一點.設過點
,
的直線為
.
(1)點的坐標為________;若
所在的直線
的函數值隨
的增大而減小,則
的取值范圍是________;
(2)當時,求直線
的解析式;
(3)若與線段
有交點,設該交點為
,是否存在
的情況?若存在,求點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線與
軸交于點
,與
軸交于點
.點
是該直線上不同于
的點,且
.
(1)寫出、
兩點的坐標;
(2)過動點且垂直于
軸的直線與直線
交于點
,若點
不在線段
上,求
的取值范圍;
(3)若直線與直線
所夾銳角為
,請直接寫出直線
的函數解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點O(0,0),A(-5,0),B(2,1),拋物線l:y=-(x-h)2+1(h為常數)與y軸的交點為C.
(1)l經過點B,求它的解析式,并寫出此時l的對稱軸及頂點坐標:
(2)設點C的縱坐標為yc,求yc的最大值,此時l上有兩點(x1,y1),(x2,y2),其中x1>x2≥0,比較y1與y1的大;
(3)當線段OA被l只分為兩部分,且這兩部分的比是1:4時,求h的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2﹣2x+c(c為常數)的對稱軸如圖所示,且拋物線過點C(0,c).
(1)當c=﹣3時,點(x1,y1)在拋物線y=x2﹣2x+c上,求y1的最小值;
(2)若拋物線與x軸有兩個交點,自左向右分別為點A、B,且OA=OB,求拋物線的解析式;
(3)當﹣1<x<0時,拋物線與x軸有且只有一個公共點,求c的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直角坐標系xOy中,一次函數y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數的圖象l2與l1交于點C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函數y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,已知直線AB的函數解析式為y=﹣2x+8,與x軸交于點A,與y軸交于點B.
(1)求A、B兩點的坐標;
(2)若點P(m,n)為線段AB上的一個動點(與A、B不重合),作PE⊥x軸于點E,PF⊥y軸于點F,連接EF,問:
①若△PAO的面積為S,求S關于m的函數關系式,并寫出m的取值范圍;
②是否存在點P,使EF的值最?若存在,求出EF的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com