【題目】某水果店購進某種水果的成本為,經過市場調研發現,這種水果在未來30天的銷售單價
與時間
之間的函數關系式為
,銷售量
與時間
的函數關系式為
。
(Ⅰ)該水果店哪一天的銷售利潤最大?最大利潤是多少?
(Ⅱ)為響應政府“精準扶貧”號召,該店決定每銷售水果就捐贈
元給“精準扶貧”對象.欲使捐贈后不虧損,且利潤隨時間
的增大而增大,求捐贈額
的值。
科目:高中數學 來源: 題型:
【題目】某班從6名班干部中(其中男生4人,女生2人),任選3人參加學校的義務勞動.
(1)設所選3人中女生人數為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科考試中,從甲、乙兩個班級各抽取10名同學的成績進行統計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.
(Ⅰ)設甲、乙兩個班所抽取的10名同學成績方差分別為、
,比較
、
的大。ㄖ苯訉懗鼋Y果,不寫過程);
(Ⅱ)從甲班10人任取2人,設這2人中及格的人數為X,求X的分布列和期望;
(Ⅲ)從兩班這20名同學中各抽取一人,在已知有人及格的條件下,求抽到乙班同學不及格的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過):
空氣質量指數 | ||||||
空氣質量等級 |
|
|
|
|
|
|
該社團將該校區在年
天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以
天計算)全年空氣質量優良的天數(未滿一天按一天計算);
(Ⅱ)該校年
月
、
日將作為高考考場,若這兩天中某天出現
級重度污染,需要凈化空氣費用
元,出現
級嚴重污染,需要凈化空氣費用
元,記這兩天凈化空氣總費用為
元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,S1=-,an-4SnSn-1=0(n≥2).
(1) 若bn=,求證:{bn}是等差數列;
(2) 求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米,
百米,廣場入口P在AB上,且
,根據規劃,過點P鋪設兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),
區域擬建為跳舞健身廣場,
區域擬建為兒童樂園,其它區域鋪設綠化草坪,設
.
(1)求綠化草坪面積的最大值;
(2)現擬將兩條小路PNM,PN進行不同風格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是偶函數.
(1)求的值;
(2)若函數的圖象與直線
沒有交點,求b的取值范圍;
(3)設,若函數
與
的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,AC∩BD=E,AD=2,AB=2,BC=6,求證:平面PBD⊥平面PAC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
(t+1)lnx,,其中t∈R.
(1)若t=1,求證:當x>1時,f(x)>0成立;
(2)若t> ,判斷函數g(x)=x[f(x)+t+1]的零點的個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com