【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米,
百米,廣場入口P在AB上,且
,根據規劃,過點P鋪設兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),
區域擬建為跳舞健身廣場,
區域擬建為兒童樂園,其它區域鋪設綠化草坪,設
.
(1)求綠化草坪面積的最大值;
(2)現擬將兩條小路PNM,PN進行不同風格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.
【答案】(1) 綠化草坪面積的最大值為平方百米;(2)
時總美化費用最低為4萬元.
【解析】試題分析:(1)先求得
,再利用均值不等式求得正解;(2)先求得
,
總美化費用為 ,再利用導數工具求得正解.
試題解析:(1)在中,
,得
,
所以
由,
在中,
,得
,
所以
所以綠化草坪面積
又因為
當且當,即
。此時
所以綠化草坪面積的最大值為平方百米.
(2)方法一:在中,
,得
,
由,
在中,
,得
,
所以總美化費用為
令得
列表如下
- | 0 | - | |||
單調遞減 | 單調遞增 |
所以當時,即
時總美化費用最低為4萬元。
方法二:在中,
,得
,
由,
在中,
,得
,
所以總美化費用為
令得
所以,
所以在
上是單調遞減
所以當,
時,即
時總美化費用最低為4萬元。
科目:高中數學 來源: 題型:
【題目】某水果店購進某種水果的成本為,經過市場調研發現,這種水果在未來30天的銷售單價
與時間
之間的函數關系式為
,銷售量
與時間
的函數關系式為
。
(Ⅰ)該水果店哪一天的銷售利潤最大?最大利潤是多少?
(Ⅱ)為響應政府“精準扶貧”號召,該店決定每銷售水果就捐贈
元給“精準扶貧”對象.欲使捐贈后不虧損,且利潤隨時間
的增大而增大,求捐贈額
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】試求下列函數的定義域與值域:
(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};
(2)f(x)=(x-1)2+1;
(3)f(x)=;
(4)f(x)=x-.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com