【題目】設數列的前
項和為
,且對任意正整數
,滿足
.
(1)求數列的通項公式.
(2)設,求數列
的前
項和
.
【答案】(1);(2)
.
【解析】
試題分析:(1)由當
時,
,兩式相減得
.又當
時,
是以首項
,公比
的等比數列
的通項公式為
;(2)由(1)知,
.
試題解析: (1)因為,
所以,當時,
,................................1分
兩式相減得,即
................3分
又當時,
,即
..........4分
所以是以首項
,公比
的等比數列,
所以數列的通項公式為
.......................6分
(2)由(1)知,,...................7分
則,①
,②.................8分
②-①得
,................................10分
,................................11分
所以,數列的前
項和為
..............................12分
科目:高中數學 來源: 題型:
【題目】已知隨機變量的取值為不大于
的非負整數值,它的分布列為:
0 | 1 | 2 | n | ||
其中(
)滿足:
,且
.
定義由生成的函數
,令
.
(I)若由生成的函數
,求
的值;
(II)求證:隨機變量的數學期望
,
的方差
;
()
(Ⅲ)現投擲一枚骰子兩次,隨機變量表示兩次擲出的點數之和,此時由
生成的函數記為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,△ABC是等邊三角形,BC=CC1=4,D是A1C1中點.
(1)求證:A1B∥平面B1CD;
(2)當三棱錐C-B1C1D體積最大時,求點B到平面B1CD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科考試中,從甲、乙兩個班級各抽取10名同學的成績進行統計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.
(Ⅰ)設甲、乙兩個班所抽取的10名同學成績方差分別為、
,比較
、
的大。ㄖ苯訉懗鼋Y果,不寫過程);
(Ⅱ)從甲班10人任取2人,設這2人中及格的人數為X,求X的分布列和期望;
(Ⅲ)從兩班這20名同學中各抽取一人,在已知有人及格的條件下,求抽到乙班同學不及格的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)在R上是單調遞減的一次函數,且f(f(x))=4x-1.
(1)求f(x);
(2)求函數y=f(x)+x2-x在x∈[-1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過):
空氣質量指數 | ||||||
空氣質量等級 |
|
|
|
|
|
|
該社團將該校區在年
天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以
天計算)全年空氣質量優良的天數(未滿一天按一天計算);
(Ⅱ)該校年
月
、
日將作為高考考場,若這兩天中某天出現
級重度污染,需要凈化空氣費用
元,出現
級嚴重污染,需要凈化空氣費用
元,記這兩天凈化空氣總費用為
元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米,
百米,廣場入口P在AB上,且
,根據規劃,過點P鋪設兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),
區域擬建為跳舞健身廣場,
區域擬建為兒童樂園,其它區域鋪設綠化草坪,設
.
(1)求綠化草坪面積的最大值;
(2)現擬將兩條小路PNM,PN進行不同風格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com