【題目】已知函數.
(1)當時,利用函數單調性的定義判斷并證明
的單調性,并求其值域;
(2)若對任意,求實數
的取值范圍.
【答案】(1)見解析;(2) a>-3.
【解析】試題分析:(I)利用函數單調性的定義,設1≤,利用作差法比較f(x1)與f(x2)的大小,進而證明函數f(x)為單調減函數,再利用單調性求函數最值即可;
(II)根據題意:“對任意x∈[1,+∞), ,恒成立,只需對任意
恒成立,再設
,利用二次函數的性質求出最小值,即可得到實數a的取值范圍.
試題解析:
(1) 任取 則
,
當
∵∴
,恒成立 ∴
∴
上是增函數,
∴當x=1時,f(x)取得最小值為,∴f(x)的值域為
(2) ,
∵對任意,恒成立
∴只需對任意恒成立。設
∵g(x)的對稱軸為x=-1, ∴只需g(1)>0便可, g(1)=3+a>0,
∴a>-3。
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過):
空氣質量指數 | ||||||
空氣質量等級 |
|
|
|
|
|
|
該社團將該校區在年
天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以
天計算)全年空氣質量優良的天數(未滿一天按一天計算);
(Ⅱ)該校年
月
、
日將作為高考考場,若這兩天中某天出現
級重度污染,需要凈化空氣費用
元,出現
級嚴重污染,需要凈化空氣費用
元,記這兩天凈化空氣總費用為
元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米,
百米,廣場入口P在AB上,且
,根據規劃,過點P鋪設兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),
區域擬建為跳舞健身廣場,
區域擬建為兒童樂園,其它區域鋪設綠化草坪,設
.
(1)求綠化草坪面積的最大值;
(2)現擬將兩條小路PNM,PN進行不同風格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是偶函數.
(1)求的值;
(2)若函數的圖象與直線
沒有交點,求b的取值范圍;
(3)設,若函數
與
的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1: (t為參數)曲線C2:
+y2=4.
(1)在同一平面直角坐標系中,將曲線C2上的點按坐標變換后得到曲線C′。求曲線C′的普通方程,并寫出它的參數方程;
(2)若C1上的點P對應的參數為t=π/2,Q為C′上的動點,求PQ中點M到直線C3: (t為參數)的距離的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,AC∩BD=E,AD=2,AB=2,BC=6,求證:平面PBD⊥平面PAC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據市場分析,南雄市精細化工園某公司生產一種化工產品,當月產量在10噸至25噸時,月生產總成本y(萬元)可以看成月產量x(噸)的二次函數;當月產量為10噸時,月總成本為20萬元;當月產量為15噸時,月總成本最低為17.5萬元,為二次函數的頂點.寫出月總成本y(萬元)關于月產量x(噸)的函數關系.已知該產品銷售價為每噸1.6萬元,那么月產量為多少時,可獲最大利潤?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com