精英家教網 > 初中數學 > 題目詳情

【題目】計算下列各式.

(1)(﹣2)3﹣|2﹣5|﹣(﹣15)

(2)﹣4﹣(+)+(﹣5)﹣(﹣

(3)(﹣++)÷(﹣

(4)18+32÷(﹣2)3﹣(﹣4)2×5

(5)﹣32﹣[(13×(﹣)﹣6÷|﹣|]

(6)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13)

【答案】(1)4;(2)﹣10;(3)﹣9;(4)﹣66;(5);(6)﹣49.

【解析】

(1)原式先計算乘方及絕對值的代數意義計算即可求出值;

(2)原式利用減法法則變形計算即可求出值;

(3)原式利用除法法則變形再利用乘法分配律計算即可求出值;

(4)原式先計算乘方運算,再計算乘除運算,最后算加減運算即可求出值;

(5)原式先計算乘方運算,再計算乘除運算,最后算加減運算即可求出值;

(6)原式逆用乘法分配律計算即可求出值

1)原式=﹣8﹣3+15=4;

(2)原式=﹣410;

(3)原式=()×(﹣24)=12﹣20+9﹣10=﹣9;

(4)原式=18﹣4﹣80=18﹣84=﹣66;

(5)原式=﹣9;

(6)原式=﹣1(2+5)﹣13×(2)=﹣10﹣39=﹣49.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,一次函數 的圖象是直線l1 , l1與x軸、y軸分別相交于A、B兩點.直線l2過點C(a,0)且與直線l1垂直,其中a>0.點P、Q同時從A點出發,其中點P沿射線AB運動,速度為每秒4個單位;點Q沿射線AO運動,速度為每秒5個單位.
(1)寫出A點的坐標和AB的長;
(2)當點P、Q運動了多少秒時,以點Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖,則下列結論中正確的是(
A.a>0
B.當x>1時,y隨x的增大而增大
C.c<0
D.3是方程ax2+bx+c=0的一個根

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知O(0,0)、A(4,0)、B(4,3).動點P從O點出發,以每秒3個單位的速度,沿△OAB的邊OA、AB、BO作勻速運動;動直線l從AB位置出發,以每秒1個單位的速度向x軸負方向作勻速平移運動.若它們同時出發,運動的時間為t秒,當點P運動到O時,它們都停止運動.
(1)當P在線段OA上運動時,求直線l與以P為圓心、1為半徑的圓相交時t的取值范圍;
(2)當P在線段AB上運動時,設直線l分別與OA、OB交于C、D,試問:四邊形CPBD是否可能為菱形?若能,求出此時t的值;若不能,請說明理由,并說明如何改變直線l的出發時間,使得四邊形CPBD會是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一幢房屋的側面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測得FG∥EH,GH=2.6m,∠FGB=65°.
(1)求證:GF⊥OC;
(2)求EF的長(結果精確到0.1m). (參考數據:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A的坐標為( ,3),AB丄x軸,垂足為B,連接OA,反比例函數y= (k>0)的圖象與線段OA、AB分別交于點C、D.若AB=3BD,以點C為圓心,CA的 倍的長為半徑作圓,則該圓與x軸的位置關系是(填”相離”,“相切”或“相交“).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當PA的長度等于時,∠PAD=60°;當PA的長度等于時,△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角坐標系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3 . 設P點坐標為(a,b),試求2S1S3﹣S22的最大值,并求出此時a、b的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,P為△ABC內一點,連接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一個三角形與△ABC相似,那么就稱P為△ABC的自相似點.
(1)如圖②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中線,過點B作BE丄CD,垂足為E.試說明E是△ABC的自相似點;
(2)在△ABC中,∠A<∠B<∠C. ①如圖③,利用尺規作出△ABC的自相似點P(寫出作法并保留作圖痕跡);
②若△ABC的內心P是該三角形的自相似點,求該三角形三個內角的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知一次函數y=x+3的圖象與x軸、y軸分別交于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點,且與x軸交于另一點C.

(1)求b、c的值;
(2)如圖1,點D為AC的中點,點E在線段BD上,且BE=2ED,連接CE并延長交拋物線于點M,求點M的坐標;
(3)將直線AB繞點A按逆時針方向旋轉15°后交y軸于點G,連接CG,如圖2,P為△ACG內一點,連接PA、PC、PG,分別以AP、AG為邊,在他們的左側作等邊△APR,等邊△AGQ,連接QR
①求證:PG=RQ;
②求PA+PC+PG的最小值,并求出當PA+PC+PG取得最小值時點P的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视