精英家教網 > 高中數學 > 題目詳情

【題目】如圖1,直線將矩形分為兩個直角梯形,將梯形沿邊翻折,如圖2,在翻折過程中(平面和平面不重合),下列說法正確的是(

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.存在某一位置,使得

D.在翻折過程中,恒有直線平面

【答案】D

【解析】

根據線線、線面、面面有關定理,對選項逐一分析,由此確定正確選項.

對于A選項,假設存在某一位置,使得平面,由于平面平面,根據線面平行的性質定理有,由圖可知這與四邊形是直角梯形矛盾,故A選項錯誤.

對于B選項,假設存在某一位置,使得平面,則,由圖可知這與四邊形是直角梯形矛盾,故B選項錯誤.

對于C選項,根據異面直線的知識可知,是異面直線,故C選項錯誤.

對于D選項,由于,所以平面平面,所以在翻折過程中,恒有直線平面.

故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD1PAAB ,點E是棱PB的中點.

1)求異面直線ECPD所成角的余弦值;

2)求二面角B-EC-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A,B,C,D是直角坐標系中不同的四點,若,,且,則下列說法正確的是( ),

A.C可能是線段AB的中點

B.D可能是線段AB的中點

C.C、D可能同時在線段AB

D.C、D不可能同時在線段AB的延長線上

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點、,

1)若兩點到直線的距離都為,求直線的方程;

2)若兩點到直線的距離都為,試根據的取值討論直線存在的條數,不需寫出直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,離心率為,是橢圓上的一個動點,且面積的最大值為.

(1)求橢圓的方程;

(2)設直線斜率為,且與橢圓的另一個交點為,是否存在點,使得若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯考,現對這兩校參加考試的學生的數學成績進行統計分析,數據統計顯示,考生的數學成績服從正態分布,從甲乙兩校100分及以上的試卷中用系統抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如圖所示的莖葉圖:

(1)試通過莖葉圖比較這40份試卷的兩校學生數學成績的中位數;

(2)若把數學成績不低于135分的記作數學成績優秀,根據莖葉圖中的數據,判斷是否有的把握認為數學成績在100分及以上的學生中數學成績是否優秀與所在學校有關?

(3)從所有參加此次聯考的學生中(人數很多)任意抽取3人,記數學成績在134分以上的人數為,求的數學期望.

附:若隨機變量服從正態分布,則,,

參考公式與臨界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某幼兒園舉辦“yue”主題系列活動——“悅”動越健康親子運動打卡活動,為了解小朋友堅持打卡的情況,對該幼兒園所有小朋友進行了調查,調查結果如下表:

打卡天數

17

18

19

20

21

男生人數

3

5

3

7

2

女生人數

3

5

5

7

3

1)根據上表數據,求該幼兒園男生平均打卡的天數;

2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的左、右焦點分別是、,左、右兩頂點分別是、,弦ABCD所在直線分別平行于x軸與y軸,線段BA的延長線與線段CD相交于點如圖).

的一條漸近線的一個方向向量,試求的兩漸近線的夾角;

,,,試求雙曲線的方程;

的條件下,且,點C與雙曲線的頂點不重合,直線和直線與直線l分別相交于點MN,試問:以線段MN為直徑的圓是否恒經過定點?若是,請求出定點的坐標;若不是,試說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视